Zusammenfassung
Hintergrund: Untersuchungen über die MRT-Tauglichkeit von Mittelohrimplantaten aus Titan bei 1,5
und 3 Tesla Feldstärke (TF) MRT-Systemen.
Methode: Die Erwärmung von 17 verschiedenen Mittelohr-Implantaten (Mittelohr: MO) aus Titan
unter dem Einfluss von starken Hochfrequenzimpulsen wurde in vitro untersucht. Die
Beurteilung der Anziehungskräfte der Implantate erfolgte schwimmend auf Moosgummi
(MG) im Wasserbad.
Ergebnisse: Eine Erwärmung der Implantate wurde bei keiner der verwendeten Sequenzen sowohl bei
3 als auch bei 1,5 TF beobachtet. Alle 17 Implantate schwammen mit geringer Geschwindigkeit
(0,0004–0,0014 m/s) auf das Magnetfeld zu. Bei 1,5 TF kam es bei den getesteten MO-Implantaten
schwimmend zu einer Geschwindigkeit von max. 0,0002 m/s und 0,0005 m/s bei den Paukenröhrchen.
Schlussfolgerung: Es fand sich keine Erwärmung bei allen untersuchten MO-Implantaten sowohl bei 1,5
und 3 TF. Die durch das statische Magnetfeld wirkenden Anziehungskräfte sind bei 1,5
und 3 TF insgesamt gering, sodass bei sachgerechter intraoperativer Verankerung keine
Dislokation zu erwarten ist. Die Indikation zur Untersuchung sollte bei 3 TF aufgrund
der anatomisch sensiblen Region streng geprüft werden.
Abstract
Behaviour of Titanium Middle Ear Implants at 1.5 and 3 Tesla Field Strength in Magnetic
Resonance Imaging
Background: Investigations into the MRI compatibility of middle ear implants made from titanium
alloys with 1.5 and 3.0 tesla MRI systems which are frequently used for imaging diagnostics.
Method: 17 different middle ear (ME) implants (ossicular replacement prosthesis (ORP) and
ventilation tubes) made from titanium were tested in vitro. Potential warming was
determined via an MRI-compatible fibre optic temperature sensor under the influence
of sequences with high-level high frequency impulses. An assessment of the attractive
force of the implants was carried out placed on a Petri dish under vibration and floating
on rubber-sponge (RS) in a water bath.
Results: No significant warming of the implants was observed with any of the used sequences
at either 3 or 1.5 Tesla field strength (TF). With 3 TF, all 17 implants changed their
position on the surface of the water and moved at a slow speed (0.0004–0.0014 m/s)
towards the magnetic field. With 1.5 TF, the tested ME implants moved at a maximum
speed of 0.0002 m/s and in the case of the ventilation tubes at 0.0005 m/s.
Conclusion: No warming occurred in any of the tested middle ear implants at either 1.5 or 3 TF.
The attractive forces exerted through the static magnetic field were overall low at
1.5 and 3 TF, indicating that no dislocation is to be expected if intraoperative anchoring
is correctly conducted. Nevertheless, the indication for examination at 3 TF should
be carefully considered due to the anatomically sensitive region.
Schlüsselwörter
Magnetresonanztomografie - Mittelohrimplantate - Titan-Implantate
Key words
Magnetic resonance imaging - middle ear implants - titanium implants
Literatur
1
Fisch U, Schmid S.
Total reconstruction of the ossicular chain.
Otolaryngol Clin North Am.
1994;
27
785-797
2
Ho SY, Battista RA, Wiet RJ.
Early results with titanium ossicular implants.
Otol Neurotol.
2003;
24
149-152
3
Begall K, Zimmermann H.
Reconstruction of the ossicular chain with titanium implants. Results of a multicenter
study.
Laryngorhinootologie.
2000;
79
139-145
4
Schwager K.
Titanium as an ossicular replacement material: results after 336 days of implantation
in the rabbit.
Am J Otol.
1998;
19
569-573
5
Sudhoff H, Lindner N, Gronemeyer J, Dazert S, Hildmann H.
Study of osteointegration of a titanium prosthesis to the stapes: observations on
an accidentally extracted stapes.
Otol Neurotol.
2005;
26
583-586
6
Sommer T, Maintz D, Schmiedel A. et al .
High field MR imaging: magnetic field interactions of aneurysm clips, coronary artery
stents and iliac artery stents with a 3.0 Tesla MR system.
Rofo.
2004;
176
731-738
7
Schenck JF.
MR safety at high magnetic fields.
Magn Reson Imaging Clin N Am.
1998;
6
715-730
8
Yang QX, Smith MB, Briggs RW, Rycyna RE.
Microimaging at 14 tesla using GESEPI for removal of magnetic susceptibility artifacts
in T(2)(*)-weighted image contrast.
J Magn Reson.
1999;
141
1-6
9
Applebaum EL, Valvassori GE.
Effects of magnetic resonance imaging fields on stapedectomy prostheses.
Arch Otolaryngol.
1985;
111
820-821
10
Applebaum EL, Valvassori GE.
Further studies on the effects of magnetic resonance imaging fields on middle ear
implants.
Ann Otol Rhinol Laryngol.
1990;
99
801-804
11
Buchli R, Boesiger P, Meier D.
Heating effects of metallic implants by MRI examinations.
Magn Reson Med.
1988;
7
255-261
12
Davis PL, Crooks L, Arakawa M, McRee R, Kaufman L, Margulis AR.
Potential hazards in NMR imaging: heating effects of changing magnetic fields and
RF fields on small metallic implants.
AJR Am J Roentgenol.
1981;
137
857-860
13
Garaventa G, Satragno L, Vellucci F, Pagano M, Pallestrini EA.
The interactions between metal stapes prostheses and high-intensity magnetic fields
during magnetic resonance tomography.
Acta Otorhinolaryngol Ital.
1991;
11
455-463
14
Huttenbrink KB, Grosse-Nobis W.
Experimental studies and theoretical considerations on the behavior of stapes metal
prostheses in the magnetic field of a nuclear magnetic resonance tomograph.
Laryngol Rhinol Otol (Stuttg).
1987;
66
127-130
15
Kwok P, Waldeck A, Strutz J.
How do metallic middle ear implants behave in the MRI?.
Laryngorhinootologie.
2003;
82
13-18
16
Marra S, Leonetti JP, Konior RJ, Raslan W.
Effect of magnetic resonance imaging on implantable eyelid weights.
Ann Otol Rhinol Laryngol.
1995;
104
448-452
17
Wild DC, Head K, Hall DA.
Safe magnetic resonance scanning of patients with metallic middle ear implants.
Clin Otolaryngol.
2006;
31
508-510
18
Mattucci KF, Setzen M, Hyman R, Chaturvedi G.
The effect of nuclear magnetic resonance imaging on metallic middle ear prostheses.
Otolaryngol Head Neck Surg.
1986;
94
441-443
19
Shellock FG, Curtis JS.
MR imaging and biomedical implants, materials, and devices: an updated review.
Radiology.
1991;
180
541-550
20
Syms AJ, Petermann GW.
Magnetic resonance imaging of stapes prostheses.
Am J Otol.
2000;
21
494-498
21
Syms MJ.
Safety of magnetic resonance imaging of stapes prostheses.
Laryngoscope.
2005;
115
381-390
22
Martin AD, Driscoll CL, Wood CP, Felmlee JP.
Safety evaluation of titanium middle ear prostheses at 3.0 tesla.
Otolaryngol Head Neck Surg.
2005;
132
537-542
23 Standard test methods for middle ear implants.
In:ASTM: American Society for Testing and Materials . 2002
24
Schrom T, Bauknecht H, Berghaus A, Scherer H.
Effects of magnetic resonance tomography on upper eyelid implants.
HNO.
2005;
53
741-746
25
Heller JW, Brackmann DE, Tucci DL, Nyenhuis JA, Chou CK.
Evaluation of MRI compatibility of the modified nucleus multichannel auditory brainstem
and cochlear implants.
Am J Otol.
1996;
17
724-729
26
Kanal E, Meltzer CC, Adelson PD, Scheuer MP.
Platinum subdural grid: MR imaging compatibility testing.
Radiology.
1999;
211
886-888
27
Teissl C, Kremser C, Hochmair ES, Hochmair-Desoyer IJ.
Magnetic resonance imaging and cochlear implants: compatibility and safety aspects.
J Magn Reson Imaging.
1999;
9
26-38
Korrespondenzadresse
Dr. med. Hans-Christian Bauknecht
Abteilung Neuroradiologie
Institut für Radiologie, Charité
Universitätsmedizin Berlin
Charitéplatz 1
10098 Berlin
Email: christian.bauknecht@charite.de