Abstract
The synthesis of 2-epi-pumiliotoxin C was achieved in ten steps
from cyclohexadiene oxide, using a challenging Cope-type hydroamination
key step. This cyclization was performed on a mixture of two epimeric
hydroxylamines, and a boat transition state is proposed to explain
the kinetic preference observed for the cyclization of the epimer
leading to N -hydroxy-epipumiliotoxin
C.
Key words
total synthesis - alkaloids - amination - cyclization - heterocycles
References and Notes
1
Müller TE.
Beller M.
Chem. Rev.
1998,
98:
675
2a
Hultzsch KC.
Org. Biomol. Chem.
2005,
3:
1819
2b
Hultzsch KC.
Adv. Synth. Catal.
2005,
347:
367
2c
Roesky PW.
Müller TE.
Angew.
Chem. Int. Ed.
2003,
42:
2708
For selected examples highlighting
the potential of hydroamination in heterocyclic synthesis, see:
3a
Trost
BM.
Tang W.
J. Am. Chem.
Soc.
2003,
125:
8744
3b
Hong S.
Kawaoka AM.
Marks TJ.
J. Am. Chem. Soc.
2003,
125:
15878
3c
Trost BM.
Tang W.
J. Am. Chem.
Soc.
2002,
124:
14542
3d
Molander GA.
Dowdy ED.
Pack SK.
J. Org. Chem.
2001,
66:
4344
For selected recent examples of
2-methylpiperidine formation via intramolecular hydroamination of
a terminal alkene, see:
4a
Liu Z.
Hartwig JF.
J. Am. Chem. Soc.
2008,
130:
1570
4b
Müller C.
Saak W.
Doye S.
Eur.
J. Org. Chem.
2008,
2731
4c
Bauer EB.
Andavan GTS.
Hollis TK.
Rubio RJ.
Cho J.
Kuchenbeiser GR.
Helgert TR.
Letko CS.
Tham FS.
Org.
Lett.
2008,
10:
1175
4d
Quinet C.
Jourdain P.
Hermans C.
Ates A.
Lucas I.
Markó IE.
Tetrahedron
2008,
64:
1077
4e
Stubbert BD.
Marks TJ.
J.
Am. Chem. Soc.
2007,
129:
4253
4f
Yu X.
Marks TJ.
Organometallics
2007,
26:
365
4g
Komeyama K.
Morimoto T.
Takaki K.
Angew.
Chem. Int. Ed.
2006,
45:
2938
4h
Han X.
Widenhoefer RA.
Angew. Chem.
Int. Ed.
2006,
45:
1747
4i
Müller C.
Loos C.
Schulenberg N.
Doye S.
Eur. J. Org.
Chem.
2006,
2499
4j
Michael FE.
Cochran BM.
J.
Am. Chem. Soc.
2006,
128:
4246
4k
Gribkov DV.
Hultzsch KC.
Hampel F.
J. Am. Chem. Soc.
2006,
128:
3748
4l
Riegert D.
Collin J.
Meddour A.
Schulz E.
Trifonov A.
J.
Org. Chem.
2006,
71:
2514
4m
Bender
CF.
Widenhoefer RA.
Org.
Lett.
2006,
8:
5303
4n
Thomson RK.
Bexrud JA.
Schafer LL.
Organometallics
2006,
25:
4069
4o
Crimmin MR.
Casely IJ.
Hill MS.
J. Am. Chem. Soc.
2005,
127:
2042
4p
Bender CF.
Widenhoefer RA.
J.
Am. Chem. Soc.
2005,
127:
1070
4q
Bextrud JA.
Beard JD.
Leitch
DC.
Schafer LL.
Org.
Lett.
2005,
7:
1959
4r
Kim JY.
Livinghouse T.
Org. Lett.
2005,
7:
1737
4s
Hong S.
Marks TJ.
Acc. Chem. Res.
2004,
37:
673
4t
Gribkov
DV.
Hultzsch KC.
Angew.
Chem. Int. Ed.
2004,
43:
5542
4u
Ryu J.-S.
Marks TJ.
McDonald FE.
J. Org. Chem.
2004,
69:
1038
4v
Lauterwasser F.
Hayes PG.
Bräse S.
Piers WE.
Schafer LL.
Organometallics
2004,
23:
2234
4w
Ryu J.-S.
Li GY.
Marks TJ.
J.
Am. Chem. Soc.
2003,
125:
12584
4x
Molander GA.
Pack SK.
J. Org. Chem.
2003,
68:
9214
4y
Kim YK.
Livinghouse T.
Angew. Chem. Int. Ed.
2002,
41:
3645
4z
Schlummer B.
Hartwig JF.
Org. Lett.
2002,
4:
147 ; see ref. 3d
5 To the best of our knowledge, there
are only few reported examples of a formation of six-membered piperidine
ring via hydroamination onto an internal alkene: see ref. 4e,g,z
for examples.
Pumiliotoxin C has been synthesized
numerous times using a variety of creative routes. However, to the
best of our knowledge hydroamination routes have not been reported. For
recent syntheses, see:
6a
Amat M.
Griera R.
Fabregat R.
Molins E.
Bosch J.
Angew.
Chem. Int. Ed.
2008,
47:
3348
6b
Lauzon S.
Tremblay F.
Gagnon D.
Godbout C.
Chabot C.
Mercier-Shanks C.
Perrault S.
DeSève H.
Spino C.
J.
Org. Chem.
2008,
73:
6239
6c
Girard N.
Hurvois J.-P.
Moinet C.
Toupet L.
Eur. J. Org. Chem.
2005,
2269
6d
Dijk EW.
Panella L.
Pinho P.
Naasz R.
Meetsma A.
Minnaard AJ.
Feringa BL.
Tetrahedron
2004,
60:
9687
6e
Oppolzer W.
Flaskamp E.
Bieber LW.
Helv.
Chim. Acta
2001,
84:
141
6f
Akashi M.
Sato Y.
Mori M.
J.
Org. Chem.
2001,
66:
7873
6g
Shieh Y.
Yeh MP.
Rao UN.
J.
Chin. Chem. Soc.
2000,
47:
283
6h
Padwa A.
Heidelbaugh TM.
Kuethe JT.
J. Org. Chem.
2000,
65:
2368
6i
Riechers T.
Krebs HC.
Wartchow R.
Habermehl G.
Eur. J. Org. Chem.
1998,
2641
6j
Back TG.
Nakajima K.
J. Org. Chem.
1998,
63:
6566
6k
Weymann M.
Schultz-Kukula M.
Kunz H.
Tetrahedron
Lett.
1998,
39:
7835 ;
for a detailed list of references, see ref. 6d
6l For a review of the literature
until 1976, see: Inubushi Y.
Ibuka T.
Heterocycles
1977,
8:
633
7a
Beauchemin A.
Moran J.
Lebrun M.
Séguin C.
Dimitrijevic E.
Zhang L.
Gorelsky SI.
Angew. Chem. Int.
Ed.
2008,
47:
1410
7b
Cebrowski PH.
Roveda
J.-G.
Moran J.
Gorelsky SI.
Beauchemin AM.
Chem. Commun.
2008,
492
7c
Moran J.
Gorelsky SI.
Dimitrijevic E.
Lebrun M.-E.
Bédard A.-C.
Séguin C.
Beauchemin AM.
J. Am. Chem. Soc.
2008,
130:
17893
7d
Bourgeois J.
Dion I.
Cebrowski PH.
Loiseau F.
Bédard A.-C.
Beauchemin AM.
J. Am. Chem. Soc.
2009,
131:
874
Such reactions are also referred
to as ‘reverse Cope cyclizations’ or reverse Cope
eliminations in the literature. For an excellent review, see:
8a
Cooper NJ.
Knight
DW.
Tetrahedron
2004,
60:
243
For examples of such cyclizations leading to the formation
of 2-methylpiperidines, see:
8b
House HO.
Lee LF.
J.
Org. Chem.
1976,
41:
863
8c
Ciganek E.
J.
Org. Chem.
1990,
55:
3007
8d
Ciganek E.
Read JM.
J. Org.
Chem.
1995,
60:
5795
8e
Tronchet JMJ.
Zsely M.
Yazji RN.
Barbalat-Rey F.
Geoffroy M.
Carbohydr. Lett.
1995,
1:
343
8f
Coogan MP.
Knight DW.
Tetrahedron
Lett.
1996,
37:
6417
8g
Takano I.
Yasuda I.
Nishijima M.
Hitotsuyanagi Y.
Takeya K.
Itokawa H.
J. Org. Chem.
1997,
62:
8251
8h
O’Neil IA.
Southern JM.
Tetrahedron
Lett.
1998,
39:
9089
8i
O’Neil IA.
Cleator E.
Southern JM.
Hone N.
Tapolczay DJ.
Synlett
2000,
695
8j
O’Neil IA.
Woolley JC.
Southern JM.
Hobbs H.
Tetrahedron
Lett.
2001,
42:
8243
For examples leading to the formation of other heterocyclic
six-membered ring systems, see:
8k
O’Neil IA.
Cleator E.
Ramos
VE.
Chorlton AP.
Tapolczay DJ.
Tetrahedron Lett.
2004,
45:
3655
8l
Henry N.
O’Neil IA.
Tetrahedron Lett.
2007,
48:
1691
8m
Ellis GL.
O’Neil IA.
Ramos VE.
Cleator E.
Kalindjian SB.
Chorlton AP.
Tapolczay DJ.
Tetrahedron
Lett.
2007,
48:
1683
9 O’Neil has reported cyclizations
of unsaturated N -methyl-hydroxylamines
leading to various six-membered ring systems: see ref. 8h-m.
The cyclization to form morpholine N -oxides
is compatible with distal alkene substitution: see ref. 8k,l.
10 A first generation synthesis designed
to provide access to various hydroamination precursors is shown
in Scheme
[8 ]
.
11
Toyota M.
Asoh T.
Matsuura M.
Fukumoto K.
J. Org. Chem.
1996,
61:
8687
12
Marino JP.
Jaén JC.
J. Am. Chem.
Soc.
1982,
104:
3165
13a
Côté A.
Lindsay VNG.
Charette AB.
Org.
Lett.
2007,
9:
85
13b
Gomez L.
Denmark SE.
Org. Lett.
2001,
3:
2907
14
Ghosh AK.
Gong G.
Org. Lett.
2007,
9:
1437
For the use of similar conditions
in a challenging five-membered system, see:
15a
Oppolzer W.
Spivey AC.
Bochet CG.
J. Am. Chem. Soc.
1994,
116:
3139
15b Hydroxylamines can be
sensitive to oxygen and prone to decomposition via bimolecular pathways: Horiyama S.
Suwa K.
Yamaki M.
Kataoka H.
Katagi T.
Takayama M.
Takeuchi T.
Chem. Pharm. Bull.
2002,
50:
996
16 None of the hydroxylamine 1a could be recovered from the reaction
mixture. ¹³ C NMR analysis indicated
that recovered hydroxylamine 1b was diastereomerically
pure (within detection limits).
17
Walts AE.
Roush WR.
Tetrahedron
1985,
41:
3463
18 For 2-epi-pumilotoxin C, comparison
of the free base was in good agreement with literature data. See: Meyers AI.
Milot G.
J.
Am. Chem. Soc.
1993,
115:
6652
For pumilotoxin C, data obtained
for the free base (ref. 6d, 19a) and the HCl salt (ref. 19b) was
in good agreement with literature data:
19a
Brandi A.
Cordero FM.
Goti A.
Guarna A.
Tetrahedron Lett.
1992,
33:
6697
19b
Schultz AG.
McCloskey PJ.
Court JJ.
J. Am. Chem. Soc.
1987,
109:
6493
20 This rationale is consistent with
results from DFT calculations in simpler systems: Dr. Serge I. Gorelsky, private
communication.
21 Complete experimental procedures and
characterization data for all new compounds can be obtained from
the authors.