Klin Padiatr 2008; 220(6): 353-357
DOI: 10.1055/s-0028-1086028
Original Article

© Georg Thieme Verlag KG Stuttgart · New York

Reduced Expression and Defective Modulation of TNF Receptor/Ligand Family Molecules on proB-ALL Blasts

Verminderte Expression und Modulation von Molekülen der TNF-Rezeptor/Ligand-Familie auf proB-ALL-BlastenA. Troeger 1 , L. Glouchkova 2 , G. Escherich 3 , M. Siepermann 1 , H. Hanenberg 1 , G. Janka-Schaub 3 , U. Göbel 1 , B. Ackermann 1 , D. Dilloo 1
  • 1Clinic for Pediatric-Oncology, -Hematology and Clinical Immunology, Heinrich Heine University Düsseldorf, Germany
  • 2Institute of Cell Biology, University of Witten/Herdecke, Witten, Germany
  • 3Clinic for Pediatric- Hematology and -Oncology, Hamburg Eppendorf, Germany
Further Information

Publication History

Publication Date:
23 October 2008 (online)

Abstract

Background: There is a subgroup of pediatric patients with an immature immunophenotype of proB-ALL that still poses a therapeutic challenge, even if the overall prognosis in B cell precursor acute lymphoblasic leukemia (BCP-ALL) is very good. Due to impaired treatment response these patients are prone to suffer relapse and are thus by definition stratified into the clinically defined high risk group receiving intensified chemotherapy. Besides response to chemotherapy long term prognosis is also influenced by immunological control mechanisms. Thus, high expression of the TNF receptor CD40 has been shown to prevent particularly late relapse in BCP-ALL suggesting a pivotal role of this regulatory molecule for maintenance of the remission status.

Patients and methods: We therefore determined the baseline expression and CD40-mediated modulation of TNF receptor and costimulatory molecules in 5 patients with proB-ALL, 8 with preB-ALL and 22 with c-ALL performing FACS analysis. We particularly compared the TNF receptor status on proB-ALL blasts to the expression on more mature preB- and c-ALL blasts.

Results: Here, we demonstrate for the first time a significantly lower baseline expression and CD40-induced modulation capacity of TNF receptor and costimulatory molecules in pediatric proB-ALL compared to more mature precursor B-ALL blasts.

Conclusion: The lower expression and defective capacity of proB-ALL blasts to respond to CD40 ligand stimulation might resemble the immature feature of these blasts and besides increased chemoresistance contribute to the impaired prognosis of these patients due to escape from apoptosis and immunological control mechanisms.

Zusammenfassung

Hintergrund: Trotz der insgesamt sehr guten Prognose bei Kindern mit Vorläufer-B-Zellleukämien gibt es eine Untergruppe von Patienten mit unreifem proB-ALL-Phänotyp, da sie ein schlechtes Ansprechen auf die Standardtherapien aufweisen. Diese Patienten werden definitionsgemäß der Hochrisikogruppe zugeordnet und erhalten eine intensivierte Chemotherapie. Das Langzeitüberleben wird jedoch auch durch die Effizienz der immunologischen Kontrolle mitbestimmt. Wir konnten kürzlich zeigen, dass eine hohe Expression des TNF-Rezeptors CD40 insbesondere vor dem Auftreten von späten Rezidiven bei Kindern mit Vorläufer-B-ALL schützt und dieses Molekül somit eine wichtige Rolle bei der Aufrechterhaltung des Remissionsstatus spielt.

Patienten und Methode: Wir haben die Expression und Modulation von TNF-Rezeptor- und kostimulatorischen Molekülen nach CD40-Stimulation auf 5 proB-, 8 präB- und 22 c-ALL-Proben mittels FACS-Analyse untersucht. Dabei haben wir insbesondere den Unterschied zwischen unreifen proB-ALL-Blasten im Vergleich zu den reiferen präB- und c-ALL-Proben ermittelt.

Ergebnis: Wir zeigen hier zum ersten Mal, dass unreife proB-ALL-Blasten eine signifikant niedrigere basale Expression, aber auch CD40-induzierte Modulationsfähigkeit von TNF-Rezeptor und kostimulatorischen Molekülen im Vergleich zu reiferen Vorläufer-B-ALL aufweisen.

Schlussfolgerung: Die niedrigere basale Expression von TNF-Molekülen und die verminderte Fähigkeit der Hochregulation von TNF- und kostimulatorischen Molekülen nach CD40-Stimulation von proB-ALL-Blasten mag Ausdruck des unreifen Immunphänotyps sein und neben der höheren Chemoresistenz eine Erklärung für die schlechtere Prognose dieser Patienten darstellen, da sich die Blasten auf diese Weise Apoptosemechanismen und der Immunkontrolle entziehen können.

References

  • 1 Armstrong SA, Staunton JE, Silverman LB. et al . MLL translocations specify a distinct gene expression profile that distinguishes a unique leukemia.  Nat Genet. 2002;  30 41-47
  • 2 Baryshnikov A, Polosukhina ER, Tupitsin NN. et al . CD95 (FAS/APO-1) antigen is a new prognostic marker of blast cells of acute lymphoblastic leukaemia patients.  Adv Exp Med Biol. 1999;  457 251-258
  • 3 Borkhardt A, Wuchter C, Viehmann S. et al . Infant acute lymphoblastic leukemia - combined cytogenetic, immunophenotypical and molecular analysis of 77 cases.  Leukemia. 2002;  16 1685-1690
  • 4 Den Boer ML, Harms DO, Pieters R. et al . Patient stratification based on prednisolone-vincristine-asparaginase resistance profiles in children with acute lymphoblastic leukemia.  J Clin Oncol. 2003;  21 3262-3268
  • 5 Faber J, Armstrong SA. Defining leukemia stem cells in MLL-translocated leukemias: implications for novel therapeutic strategies.  Klin Padiatr. 2007;  219 306-311
  • 6 Fulda S, Meyer E, Friesen C. et al . Cell type specific involvement of death receptor and mitochondrial pathways in drug-induced apoptosis.  Oncogene. 2001;  20 1063-1075
  • 7 Gordon J. CD40 and its ligand: central players in B lymphocyte survival, growth, and differentiation.  Blood Rev. 1995;  9 53-56
  • 8 Grewal IS, Flavell RA. The role of CD40 ligand in costimulation and T-cell activation.  Immunol Rev. 1996;  153 85-106
  • 9 Harms DO, Janka-Schaub GE. Co-operative study group for childhood acute lymphoblastic leukemia (COALL): long-term follow-up of trials 82, 85, 89 and 92.  Leukemia. 2000;  14 2234-2239
  • 10 Holleman A, den Boer ML, Menezes RX de. et al . The expression of 70 apoptosis genes in relation to lineage, genetic subtype, cellular drug resistance, and outcome in childhood acute lymphoblastic leukemia.  Blood. 2006;  107 769-776
  • 11 Janka-Schaub GE, Harms D, Goebel U. et al . Randomized comparison of rotational chemotherapy in high-risk acute lymphoblastic leukaemia of childhood – follow up after 9 years. Coall Study Group.  Eur J Pediatr. 1996;  155 640-648
  • 12 Law CL, Wormann B, LeBien TW. Analysis of expression and function of CD40 on normal and leukemic human B cell precursors.  Leukemia. 1990;  4 732-738
  • 13 Lowdell MW, Lamb L, Hoyle C. et al . Non-MHC-restricted cytotoxic cells: their roles in the control and treatment of leukaemias.  Br J Haematol. 2001;  114 11-24
  • 14 Maurer D, Holter W, Majdic O. et al . CD27 expression by a distinct subpopulation of human B lymphocytes.  Eur J Immunol. 1990;  20 2679-2684
  • 15 Nilsson A, Milito A de, Mowafi F. et al . Expression of CD27-CD70 on early B cell progenitors in the bone marrow: implication for diagnosis and therapy of childhood ALL.  Exp Hematol. 2005;  33 1500-1507
  • 16 Posovszky C, Friesen C, Herr I. et al . Chemotherapeutic drugs sensitize pre-B ALL cells for CD95- and cytotoxic T-lymphocyte-mediated apoptosis.  Leukemia. 1999;  13 400-409
  • 17 Prasad KV, Ao Z, Yoon Y. et al . CD27, a member of the tumor necrosis factor receptor family, induces apoptosis and binds to Siva, a proapoptotic protein.  Proc Natl Acad Sci USA. 1997;  94 6346-6351
  • 18 Ramakers-van Woerden NL, Beverloo HB, Veerman AJ. et al . In vitro drug-resistance profile in infant acute lymphoblastic leukemia in relation to age, MLL rearrangements and immunophenotype.  Leukemia. 2004;  18 521-529
  • 19 Schattner EJ, Elkon KB, Yoo DH. et al . CD40 ligation induces Apo-1/Fas expression on human B lymphocytes and facilitates apoptosis through the Apo-1/Fas pathway.  J Exp Med. 1995;  182 1557-1565
  • 20 Schultz KR, Pullen DJ, Sather HN. et al . Risk- and response-based classification of childhood B-precursor acute lymphoblastic leukemia: a combined analysis of prognostic markers from the Pediatric Oncology Group (POG) and Children's Cancer Group (CCG).  Blood. 2007;  109 926-935
  • 21 Trentin L, Perin A, Siviero M. et al . B7 costimulatory molecules from malignant cells in patients with b-cell chronic lymphoproliferative disorders trigger t-cell proliferation.  Cancer. 2000;  89 1259-1268
  • 22 Troeger A, Glouchkova L, Ackermann B. et al . High expression of CD40 on BCP-ALL blasts is an independent risk factor associated with improved survival and enhanced capacity to upregulate the death receptor CD95.  Blood. 2008;  112 1028-1034
  • 23 Troeger A, Schmitz I, Siepermann M. et al . Up-regulation of c-FLIPS+R upon CD40 stimulation is associated with inhibition of CD95-induced apoptosis in primary precursor B-ALL.  Blood. 2007;  110 384-387
  • 24 Troeger A, Siepermann M, Escherich G. et al . Survivin and its prognostic significance in pediatric acute B-cell precursor lymphoblastic leukemia.  Haematologica. 2007b;  92 1043-1050
  • 25 Troger A, Siepermann M, Mahotka C. et al . Role of survivin splice variants in pediatric acute precursor B lymphoblastic leukemia.  Klin Padiatr. 2007;  219 127-133
  • 26 Hove LE Van den, Gool SW Van, Vandenberghe P. et al . CD40 triggering of chronic lymphocytic leukemia B cells results in efficient alloantigen presentation and cytotoxic T lymphocyte induction by up-regulation of CD80 and CD86 costimulatory molecules.  Leukemia. 1997;  11 572-580
  • 27 Yellin MJ, Sinning J, Covey LR. et al . T lymphocyte T cell-B cell-activating molecule/CD40-L molecules induce normal B cells or chronic lymphocytic leukemia B cells to express CD80 (B7/BB-1) and enhance their costimulatory activity.  J Immunol. 1994;  153 666-674
  • 28 Yoon Y, Ao Z, Cheng Y. et al . Murine Siva-1 and Siva-2, alternate splice forms of the mouse Siva gene, both bind to CD27 but differentially transduce apoptosis.  Oncogene. 1999;  18 7174-7179

Correspondence

Dr. Anja Troeger

Clinic for Pediatric-Oncology,

-Hematology and Clinical Immunology, Heinrich Heine

University Düsseldorf

Moorenstr. 5

40225 Düsseldorf

Germany

Phone: +49/211/811 62 24

Fax: +49/211/811 61 91

Email: troeger@med.uni-duesseldorf.de

    >