Klinische Neurophysiologie 2008; 39(3): 194-200
DOI: 10.1055/s-0028-1086015
Originalia

© Georg Thieme Verlag KG Stuttgart · New York

Verarbeitung von propriozeptiver Information beim idiopathischen Parkinson-Syndrom und der Einfluss von Levodopa

Processing of Proprioceptive Information in Idiopathic Parkinson's Disease and the Influence of LevodopaC. Schrader 1 , T. Peschel 1 , A. R. Kossev 1 , 2
  • 1Neurologische Klinik mit Klinischer Neurophysiologie, Medizinische Hochschule Hannover
  • 2Institut für Biophysik, Bulgarische Akademie der Wissenschaften, Sofia, Bulgarien
Further Information

Publication History

Publication Date:
22 September 2008 (online)

Zusammenfassung

Einleitung: Muskelvibration (MV) beeinflusst die Wahrnehmung von Bewegung und Lagesinn besonders in Abwesenheit visueller Kontrolle. Beim idiopathischen Parkinson-Syndrom (IPS) hat MV einen geringeren Einfluss auf Kinästhesie als bei Gesunden, der aber durch dopaminerge Medikation wieder vergrößert werden kann. Man misst diesen Besonderheiten eine Bedeutung bei der Entstehung von Hypometrie und Bradykinese bei. Die genauen Mechanismen des verminderten Einflusses von MV auf Kinästhesie beim IPS sind unklar.

Methodik: Mit transkranieller Magnetstimulation (TMS) wurde die Verarbeitung von propriozeptiver Reizung der Unterarmmuskulatur von zehn IPS Patienten im medikamentösen Off- und On-Zustand untersucht und mit zehn altersentsprechenden Kontrollen verglichen. Mit einem Doppelpulsparadigma wurden motorisch evozierte Potenziale (MEPs) aus dem M. extensor und M. flexor carpi radialis (ECR und FCR) des klinisch führend betroffenen Armes ohne und mit propriozeptiver Stimulation – 80 Hz MV des Bauches des ECR – abgeleitet.

Ergebnisse: Im Gegensatz zu Kontrollprobanden führt MV beim IPS im Off-Zustand zu keiner Fazilitierung von MEPs. Im medikamentösen On-Zustand kommt es unter Muskelvibration wie bei Kontrollprobanden zu einer selektiven Fazilitierung von MEPs aus dem vibrierten Muskel. Dieser Effekt ist im Vergleich zur Kontrollgruppe jedoch deutlich geringer ausgeprägt.

Schlussfolgerung: Die Verarbeitung von Vibrationsreizen ist beim IPS verändert und kann durch Levodopa zum Teil normalisiert werden. Dies lässt sich mithilfe von TMS nachweisen.

Abstract

Introduction: Muscle vibration (MV) influences the perception of movement and proprioception especially without visual control. In idiopathic Parkinson's disease, MV has a smaller impact on kinaesthesia than in healthy people; this impact may be enhanced by dopaminergic medication. This peculiarity is deemed to contribute to the genesis of hypometria and bradykinesia. The exact mechanisms of the reduced influence of MV on kinaesthesia in IPD are unclear.

Methods: The processing of proprioceptive stimulation of forearm muscles was examined in 10 IPD patients in the off and on state using transcranial magnetic stimulation (TMS) and compared to that of 10 age-matched controls. A paired-pulse paradigm to investigate intracortical excitability was used to record motor evoked potentials (MEP) in the extensor and flexor carpi radialis muscles (ECR and FCR) of the more impaired arm without and during proprioceptive stimulation − 80 Hz muscle vibration (MV) of the belly of the ECR.

Results: In contrast to controls, MV does not facilitate MEPs in IPD in the off state. In the on state MV causes, like in controls, a selective facilitation of MEPs recorded from the vibrated muscle. This effect is considerably smaller in IPD, though.

Conclusion: The processing of vibratory input in IPD is disturbed and can be partially normalized by levodopa. This effect can be detected by means of TMS.

Literatur

  • 1 MacIntosh GC, Brown SH, Rice RR. et al . Rhythmic auditory-motor facilitation of gait patterns in patients with Parkinson's disease, J.  Neurol Neurosurg Psychiatry. 1997;  62 22-26
  • 2 Morris ME, Iansek R, Matyas TA. et al . Stride length regulation in Parkinson's disease. Normalization strategies and underlying mechanisms.  Brain. 1996;  119 ((Pt 2)) 551-568
  • 3 Oliveira RM, Gurd JM, Nixon P. et al . Micrographia in Parkinson's disease: the effect of providing external cues, J.  Neurol Neurosurg Psychiatry. 1997;  63 429-433
  • 4 Klockgether T, Dichgans J. Visual control of arm movement in Parkinson's disease.  Mov Disord. 1994;  9 48-56
  • 5 Moore AP. Impaired sensorimotor integration in parkinsonism and dyskinesia: a role for corollary discharges?.  J Neurol Neurosurg Psychiatry. 1987;  50 544-552
  • 6 Roll JP, Vedel JP, Ribot E. Alteration of proprioceptive messages induced by tendon vibration in man: a microneurographic study.  Exp Brain Res. 1989;  76 213-222
  • 7 Khudados E, Cody FW, O’Boyle DJ. Proprioceptive regulation of voluntary ankle movements, demonstrated using muscle vibration, is impaired by Parkinson's disease.  J Neurol Neurosurg Psychiatry. 1999;  67 504-510
  • 8 Rickards C, Cody FW. Proprioceptive control of wrist movements in Parkinson's disease* Reduced muscle vibration-induced errors.  Brain. 1997;  120 ((Pt 6)) 977-990
  • 9 Boecker H, Ceballos-Baumann A, Bartenstein P. et al . Sensory processing in Parkinson's and Huntington's disease: investigations with 3D H(2)(15)O-PET.  Brain. 1999;  122 ((Pt 9)) 1651-1665
  • 10 Kujirai T, Caramia MD, Rothwell JC. et al . Corticocortical inhibition in human motor cortex.  J Physiol. 1993;  471 501-519
  • 11 Sanger TD, Garg RR, Chen R. Interactions between two different inhibitory systems in the human motor cortex.  J Physiol. 2001;  530 307-317
  • 12 Ziemann U, Rothwell JC, Ridding MC. Interaction between intracortical inhibition and facilitation in human motor cortex.  J Physiol. 1996;  496 ((Pt 3)) 873-881
  • 13 Cantello R, Tarletti R, Civardi C. Transcranial magnetic stimulation and Parkinson's disease.  Brain Res Brain Res Rev. 2002;  38 309-327
  • 14 Rosenkranz K, Pesenti A, Paulus W. et al . Focal reduction of intracortical inhibition in the motor cortex by selective proprioceptive stimulation.  Exp Brain Res. 2003;  149 9-16
  • 15 Schrader C, Peschel T, Dauper J. et al . Changes in processing of proprioceptive information in Parkinson's disease and multiple system atrophy.  Clin Neurophysiol. 2008;  119 1139-1146
  • 16 Siggelkow S, Kossev A, Schubert M. et al . Modulation of motor evoked potentials by muscle vibration: the role of vibration frequency.  Muscle Nerve. 1999;  22 1544-1548
  • 17 Siggelkow S, Kossev A, Moll C. et al . Impaired sensorimotor integration in cervical dystonia: a study using transcranial magnetic stimulation and muscle vibration.  J Clin Neurophysiol. 2002;  19 232-239
  • 18 Hughes AJ, Daniel SE, Kilford L. et al . Accuracy of clinical diagnosis of idiopathic Parkinson's disease: a clinico-pathological study of 100 cases.  J Neurol Neurosurg Psychiatry. 1992;  55 181-184
  • 19 Kossev A, Siggelkow S, Schubert M. et al . Muscle vibration: different effects on transcranial magnetic and electrical stimulation.  Muscle Nerve. 1999;  22 946-948
  • 20 Claus D, Mills KR, Murray NM. The influence of vibration on the excitability of alpha motoneurones, Electroencephalogr.  Clin Neurophysiol. 1988;  69 431-436
  • 21 Claus D, Mills KR, Murray NM. Facilitation of muscle responses to magnetic brain stimulation by mechanical stimuli in man.  Exp Brain Res. 1988;  71 273-278
  • 22 Ziemann U, Lonnecker S, Steinhoff BJ. et al . Effects of antiepileptic drugs on motor cortex excitability in humans: a transcranial magnetic stimulation study.  Ann Neurol. 1996;  40 367-378
  • 23 Kossev AR, Siggelkow S, Dengler R. et al . Intracortical inhibition and facilitation in paired-pulse transcranial magnetic stimulation: effect of conditioning stimulus intensity on sizes and latencies of motor evoked potentials.  J Clin Neurophysiol. 2003;  20 54-58
  • 24 Kossev A, Siggelkow S, Kapels H. et al . Crossed effects of muscle vibration on motor-evoked potentials.  Clin Neurophysiol. 2001;  112 453-456
  • 25 Rosenkranz K, Rothwell JC. Differential effect of muscle vibration on intracortical inhibitory circuits in humans.  J Physiol. 2003;  551 649-660
  • 26 Bares M, Kanovsky P, Klajblova H. et al . Intracortical inhibition and facilitation are impaired in patients with early Parkinson's disease: a paired TMS study.  Eur J Neurol. 2003;  10 385-389
  • 27 Dauper J, Peschel T, Schrader C. et al . Effects of subthalamic nucleus (STN) stimulation on motor cortex excitability.  Neurology. 2002;  59 700-706
  • 28 Lewis GN, Byblow WD. Altered sensorimotor integration in Parkinson's disease.  Brain. 2002;  125 2089-2099
  • 29 Cunic D, Roshan L, Khan FI. et al . Effects of subthalamic nucleus stimulation on motor cortex excitability in Parkinson's disease.  Neurology. 2002;  58 1665-1672
  • 30 Ridding MC, Inzelberg R, Rothwell JC. Changes in excitability of motor cortical circuitry in patients with Parkinson's disease.  Ann Neurol. 1995;  37 181-188
  • 31 Berardelli A, Rona S, Inghilleri M. et al . Cortical inhibition in Parkinson's disease* A study with paired magnetic stimulation.  Brain. 1996;  119 ((Pt 1)) 71-77
  • 32 Kuhn AA, Grosse P, Holtz K. et al . Patterns of abnormal motor cortex excitability in atypical parkinsonian syndromes.  Clin Neurophysiol. 2004;  115 1786-1795
  • 33 Marchese R, Trompetto C, Buccolieri A. et al . Abnormalities of motor cortical excitability are not correlated with clinical features in atypical parkinsonism.  Mov Disord. 2000;  15 1210-1214
  • 34 Wolters A, Classen J, Kunesch E. et al . Measurements of transcallosally mediated cortical inhibition for differentiating parkinsonian syndromes.  Mov Disord. 2004;  19 518-528
  • 35 Klockgether T, Borutta M, Rapp H. et al . A defect of kinesthesia in Parkinson's disease.  Mov Disord. 1995;  10 460-465
  • 36 Maschke M, Gomez CM, Tuite PJ. et al . Dysfunction of the basal ganglia, but not the cerebellum, impairs kinaesthesia.  Brain. 2003;  126 2312-2322
  • 37 Schneider JS, Diamond SG, Markham CH. Parkinson's disease: sen-sory and motor problems in arms and hands.  Neurology. 1987;  37 951-956
  • 38 Zia S, Cody F, O’Boyle D. Joint position sense is impaired by Parkinson's disease.  Ann Neurol. 2000;  47 218-228
  • 39 Zia S, Cody FW, O’Boyle DJ. Identification of unilateral elbow-joint position is impaired by Parkinson's disease.  Clin Anat. 2002;  15 23-31

Korrespondenzadresse

Dr. C. Schrader

Neurologische Klinik mit Klinischer Neurophysiologie

Medizinische Hochschule Hannover

Carl-Neuberg-Straße 1

30623 Hannover

Email: schrader.christoph@mh-hannover.de

    >