Subscribe to RSS
DOI: 10.1055/a-2741-2030
Biomarkers in Sarcoidosis: From Traditional Markers to Precision Medicine
Authors
Funding Information The study was financed by a Project (project no.: PI23/00924), funded by Instituto de Salud Carlos III (ISCIII) and co-funded by the European Union Fundació La Marató de TV3 (grant no.: 61/C/2025) for respiratory diseases research, SEPAR, SOCAP, FUCAP, and the August Pi i Sunyer Biomedical Research Institute (IDIBAPS).
Abstract
Sarcoidosis remains a diagnostic and therapeutic challenge due to its heterogeneous clinical presentation and lack of pathognomonic features. Despite five decades of biomarker research, no single marker has achieved sufficient accuracy for a standalone diagnosis. Traditional biomarkers retain clinical utility when used strategically: High-sensitivity markers (soluble interleukin-2 receptor [sIL-2R], serum amyloid A [SAA], chitotriosidase) excel at confirming disease, while high-specificity markers (lysozyme) better exclude sarcoidosis. Chitotriosidase has emerged as superior to angiotensin-converting enzyme (ACE) for disease monitoring, and sIL-2R remains invaluable for detecting extrapulmonary involvement. However, their limitations necessitate multibiomarker approaches tailored to specific clinical phenotypes. Recent advances address critical unmet needs. High-sensitivity troponin T provides crucial prognostic information in cardiac sarcoidosis, with levels >14 ng/L predicting adverse outcomes. Novel fibrosis markers, including alveolar nitric oxide, heat shock protein 90α (HSP90α), and advanced Krebs von den Lungen-6 (KL-6) measurement, enable better assessment of disease progression. Prediagnostic inflammatory proteins elevated years before clinical manifestation suggest opportunities for early intervention. Revolutionary omics technologies are transforming biomarker discovery. Extracellular vesicle proteomics identifies treatment-responsive signatures, retrotrans-genomics reveals viral element activation in pathogenesis, and Mendelian randomization distinguishes causal from associative proteins. Integration of multiomics data through machine learning algorithms promises personalized diagnostic and therapeutic strategies. The future of sarcoidosis management lies in intelligent biomarker integration rather than reliance on single tests. Success will be measured by improved patient outcomes through earlier diagnosis, accurate risk stratification, and personalized treatment selection. This paradigm shift from empirical to precision medicine requires continued collaboration between researchers, clinicians, and patients to translate biomarker discoveries into clinical practice.
Keywords
sarcoidosis - biomarkers - angiotensin-converting enzyme - chitotriosidase - cardiac sarcoidosis - precision medicinePublication History
Received: 25 July 2025
Accepted: 06 November 2025
Accepted Manuscript online:
10 November 2025
Article published online:
12 December 2025
© 2025. Thieme. All rights reserved.
Thieme Medical Publishers, Inc.
333 Seventh Avenue, 18th Floor, New York, NY 10001, USA
-
References
- 1 ATS Journals. Statement on Sarcoidosis. Joint Statement of the American Thoracic Society (ATS), the European Respiratory Society (ERS) and the World Association of Sarcoidosis and Other Granulomatous Disorders (WASOG) adopted by the ATS Board of Directors and by the ERS Executive Committee, February 1999.. Am J Respir Crit Care Med 1999; 160 (02) 736-755
- 2 Baughman RP, Teirstein AS, Judson MA. et al; Case Control Etiologic Study of Sarcoidosis (ACCESS) research group. Clinical characteristics of patients in a case control study of sarcoidosis. Am J Respir Crit Care Med 2001; 164 (10 Pt 1): 1885-1889
- 3 Crouser ED, Maier LA, Wilson KC. et al. Diagnosis and detection of sarcoidosis. An Official American Thoracic Society Clinical Practice Guideline. Am J Respir Crit Care Med 2020; 201 (08) e26-e51
- 4 Drent M, Crouser ED, Grunewald J. Challenges of sarcoidosis and its management. N Engl J Med 2021; 385 (11) 1018-1032
- 5 Chopra A, Kalkanis A, Judson MA. Biomarkers in sarcoidosis. Expert Rev Clin Immunol 2016; 12 (11) 1191-1208
- 6 Ramos-Casals M, Retamozo S, Sisó-Almirall A, Pérez-Alvarez R, Pallarés L, Brito-Zerón P. Clinically-useful serum biomarkers for diagnosis and prognosis of sarcoidosis. Expert Rev Clin Immunol 2019; 15 (04) 391-405
- 7 Lieberman J. Elevation of serum angiotensin-converting-enzyme (ACE) level in sarcoidosis. Am J Med 1975; 59 (03) 365-372
- 8 Grunewald J, Grutters JC, Arkema EV, Saketkoo LA, Moller DR, Müller-Quernheim J. Sarcoidosis. Nat Rev Dis Primers 2019; 5 (01) 45
- 9 Fingerlin TE, Hamzeh N, Maier LA. Genetics of sarcoidosis. Clin Chest Med 2015; 36 (04) 569-584
- 10 Crouser ED, Fingerlin TE, Yang IV. et al. Application of “omics” and systems biology to sarcoidosis research. Ann Am Thorac Soc 2017; 14 (Suppl. 06) S445-S451
- 11 Bargagli E, Mazzi A, Rottoli P. Markers of inflammation in sarcoidosis: blood, urine, BAL, sputum, and exhaled gas. Clin Chest Med 2008; 29 (03) 445-458 , viii viii.
- 12 Lieberman J, Nosal A, Schlessner A, Sastre-Foken A. Serum angiotensin-converting enzyme for diagnosis and therapeutic evaluation of sarcoidosis. Am Rev Respir Dis 1979; 120 (02) 329-335
- 13 Rigat B, Hubert C, Alhenc-Gelas F, Cambien F, Corvol P, Soubrier F. An insertion/deletion polymorphism in the angiotensin I-converting enzyme gene accounting for half the variance of serum enzyme levels. J Clin Invest 1990; 86 (04) 1343-1346
- 14 Kruit A, Grutters JC, Gerritsen WBM. et al. ACE I/D-corrected Z-scores to identify normal and elevated ACE activity in sarcoidosis. Respir Med 2007; 101 (03) 510-515
- 15 Klech H, Kohn H, Kummer F, Mostbeck A. Assessment of activity in Sarcoidosis. Sensitivity and specificity of 67Gallium scintigraphy, serum ACE levels, chest roentgenography, and blood lymphocyte subpopulations. Chest 1982; 82 (06) 732-738
- 16 Thi Hong Nguyen C, Kambe N, Kishimoto I, Ueda-Hayakawa I, Okamoto H. Serum soluble interleukin-2 receptor level is more sensitive than angiotensin-converting enzyme or lysozyme for diagnosis of sarcoidosis and may be a marker of multiple organ involvement. J Dermatol 2017; 44 (07) 789-797
- 17 Ungprasert P, Carmona EM, Crowson CS, Matteson EL. Diagnostic utility of angiotensin-converting enzyme in sarcoidosis: A population-based study. Lung 2016; 194 (01) 91-95
- 18 Mañá J, Gómez-Vaquero C, Montero A. et al. Löfgren's syndrome revisited: A study of 186 patients. Am J Med 1999; 107 (03) 240-245
- 19 Vorselaars ADM, van Moorsel CHM, Zanen P. et al. ACE and sIL-2R correlate with lung function improvement in sarcoidosis during methotrexate therapy. Respir Med 2015; 109 (02) 279-285
- 20 Bargagli E, Bennett D, Maggiorelli C. et al. Human chitotriosidase: A sensitive biomarker of sarcoidosis. J Clin Immunol 2013; 33 (01) 264-270
- 21 Popević S, Šumarac Z, Jovanović D. et al. Verifying sarcoidosis activity: chitotriosidase versus ACE in sarcoidosis - a case-control study. J Med Biochem 2016; 35 (04) 390-400
- 22 Harlander M, Salobir B, Zupančič M, Dolenšek M, Bavčar Vodovnik T, Terčelj M. Serial chitotriosidase measurements in sarcoidosis–two to five year follow-up study. Respir Med 2014; 108 (05) 775-782
- 23 Boot RG, Hollak CEM, Verhoek M, Alberts C, Jonkers RE, Aerts JM. Plasma chitotriosidase and CCL18 as surrogate markers for granulomatous macrophages in sarcoidosis. Clin Chim Acta 2010; 411 (1–2): 31-36
- 24 Michelakakis H, Dimitriou E, Labadaridis I. The expanding spectrum of disorders with elevated plasma chitotriosidase activity: An update. J Inherit Metab Dis 2004; 27 (05) 705-706
- 25 Rømer FK, Ahlbom G, Jensen JU. Relationship between angiotensin-converting enzyme and lysozyme in sarcoidosis. Eur J Respir Dis 1982; 63 (04) 330-336
- 26 Grönhagen-Riska C, Selroos O. Angiotensin converting enzyme. IV. Changes in serum activity and in lysozyme concentrations as indicators of the course of untreated sarcoidosis. Scand J Respir Dis 1979; 60 (06) 337-344
- 27 Keicho N, Kitamura K, Takaku F, Yotsumoto H. Serum concentration of soluble interleukin-2 receptor as a sensitive parameter of disease activity in sarcoidosis. Chest 1990; 98 (05) 1125-1129
- 28 Gungor S, Ozseker F, Yalcinsoy M. et al. Conventional markers in determination of activity of sarcoidosis. Int Immunopharmacol 2015; 25 (01) 174-179
- 29 Grutters JC, Fellrath J-M, Mulder L, Janssen R, van den Bosch JMM, van Velzen-Blad H. Serum soluble interleukin-2 receptor measurement in patients with sarcoidosis: A clinical evaluation. Chest 2003; 124 (01) 186-195
- 30 Kalkanis A, Kalkanis D, Drougas D. et al. Correlation of spleen metabolism assessed by 18F-FDG PET with serum interleukin-2 receptor levels and other biomarkers in patients with untreated sarcoidosis. Nucl Med Commun 2016; 37 (03) 273-277
- 31 Kiko T, Yoshihisa A, Kanno Y. et al. A multiple biomarker approach in patients with cardiac sarcoidosis. Int Heart J 2018; 59 (05) 996-1001
- 32 Kobayashi Y, Sato T, Nagai T. et al. Association of high serum soluble interleukin 2 receptor levels with risk of adverse events in cardiac sarcoidosis. ESC Heart Fail 2021; 8 (06) 5282-5292
- 33 Uysal P, Durmus S, Sozer V. et al. YKL-40, soluble IL-2 receptor, angiotensin converting enzyme and C-reactive protein: Comparison of markers of sarcoidosis activity. Biomolecules 2018; 8 (03) 84
- 34 Eurelings LEM, Miedema JR, Dalm VASH. et al. Sensitivity and specificity of serum soluble interleukin-2 receptor for diagnosing sarcoidosis in a population of patients suspected of sarcoidosis. PLoS ONE 2019; 14 (10) e0223897
- 35 Ziegenhagen MW, Benner UK, Zissel G, Zabel P, Schlaak M, Müller-Quernheim J. Sarcoidosis: TNF-alpha release from alveolar macrophages and serum level of sIL-2R are prognostic markers. Am J Respir Crit Care Med 1997; 156 (05) 1586-1592
- 36 Su R, Nguyen M-LT, Agarwal MR. et al. Interferon-inducible chemokines reflect severity and progression in sarcoidosis. Respir Res 2013; 14 (01) 121
- 37 Miyoshi S, Hamada H, Kadowaki T. et al. Comparative evaluation of serum markers in pulmonary sarcoidosis. Chest 2010; 137 (06) 1391-1397
- 38 Paone G, Leone A, Batzella S. et al. Use of discriminant analysis in assessing pulmonary function worsening in patients with sarcoidosis by a panel of inflammatory biomarkers. Inflamm Res 2013; 62 (03) 325-332
- 39 Lawrence EC, Brousseau KP, Berger MB, Kurman CC, Marcon L, Nelson DL. Elevated concentrations of soluble interleukin-2 receptors in serum samples and bronchoalveolar lavage fluids in active sarcoidosis. Am Rev Respir Dis 1988; 137 (04) 759-764
- 40 Vorselaars ADM, Crommelin HA, Deneer VHM. et al. Effectiveness of infliximab in refractory FDG PET-positive sarcoidosis. Eur Respir J 2015; 46 (01) 175-185
- 41 Schimmelpennink MC, Vorselaars ADM, van Beek FT. et al. Efficacy and safety of infliximab biosimilar Inflectra® in severe sarcoidosis. Respir Med 2018; 138S: S7-S13
- 42 Nässberger L, Sturfelt G, Thysell H. Serum levels of the soluble interleukin-2 receptor are dependent on the kidney function. Am J Nephrol 1992; 12 (06) 401-405
- 43 Groen-Hakan F, Eurelings L, ten Berge JC. et al. Diagnostic value of serum-soluble interleukin 2 receptor levels vs angiotensin-converting enzyme in patients with sarcoidosis-associated uveitis. JAMA Ophthalmol 2017; 135 (12) 1352-1358
- 44 Rothkrantz-Kos S, van Dieijen-Visser MP, Mulder PGH, Drent M. Potential usefulness of inflammatory markers to monitor respiratory functional impairment in sarcoidosis. Clin Chem 2003; 49 (09) 1510-1517
- 45 Lopes MC, Amadeu TP, Ribeiro-Alves M. et al. Identification of active sarcoidosis using chitotriosidase and angiotensin-converting enzyme. Lung 2019; 197 (03) 295-302
- 46 Sweiss NJ, Barnathan ES, Lo K, Judson MA, Baughman R. T48 Investigators. C-reactive protein predicts response to infliximab in patients with chronic sarcoidosis. Sarcoidosis Vasc Diffuse Lung Dis 2010; 27 (01) 49-56
- 47 Niederer RL, Al-Janabi A, Lightman SL, Tomkins-Netzer O. Serum angiotensin-converting enzyme has a high negative predictive value in the investigation for systemic sarcoidosis. Am J Ophthalmol 2018; 194: 82-87
- 48 Papasavvas I, Gehrig B, Herbort Jr CP. the comparative value of serum angiotensin converting enzyme (ACE) and lysozyme and the use of polyclonal antibody activation in the work-up of ocular sarcoidosis. Diagnostics (Basel) 2021; 11 (04) 608
- 49 Tomita H, Sato S, Matsuda R. et al. Serum lysozyme levels and clinical features of sarcoidosis. Lung 1999; 177 (03) 161-167
- 50 Francesqui J, Marrades P, Sellares J. Personalized medicine in sarcoidosis: unravelling biomarkers for targeted care. Curr Opin Pulm Med 2023; 29 (05) 478-484
- 51 Baba Y, Kubo T, Nabeta T. et al. Prognostic role of high-sensitivity cardiac troponin T in patients with cardiac sarcoidosis: Insights from ILLUMINATE-CS. ESC Heart Fail 2025; 12 (02) 869-878
- 52 Roumi JE, Taimeh Z. Emerging biomarkers in cardiac sarcoidosis and other inflammatory cardiomyopathies. Curr Heart Fail Rep 2024; 21 (06) 570-579
- 53 Baba Y, Kubo T, Kitaoka H. et al. Usefulness of high-sensitive cardiac troponin T for evaluating the activity of cardiac sarcoidosis. Int Heart J 2012; 53 (05) 287-292
- 54 Kandolin R, Lehtonen J, Airaksinen J. et al. Usefulness of cardiac troponins as markers of early treatment response in cardiac sarcoidosis. Am J Cardiol 2015; 116 (06) 960-964
- 55 Bakker ALM, Mathijssen H, Huitema MP. et al. Holter monitoring and cardiac biomarkers in screening for cardiac sarcoidosis. Lung 2024; 203 (01) 10
- 56 Otsuki S, Hatakeyama M, Kimura AM. et al. Relation between resting amygdala activity and cardiovascular events in patients with cardiac sarcoidosis. Eur J Nucl Med Mol Imaging 2025; 52 (11) 4224-4232
- 57 Peng C, Talreja J, Steinbauer B, Shinki K, Koth LL, Samavati L. Discovery of two novel immunoepitopes and development of a peptide-based sarcoidosis immunoassay. Am J Respir Crit Care Med 2024; 210 (07) 908-918
- 58 Moor CC, Oppenheimer JC, Nakshbandi G. et al. Diagnosis of interstitial lung diseases using eNose technology. Eur Respir J 2020; 56 (Suppl. 64) 5191
- 59 Levra S, Giannoccaro F, Chernovsky M. et al. Alveolar nitric oxide concentration as a potential biomarker of fibrosis and active disease in pulmonary sarcoidosis: A pilot study. J Breath Res 2025; 19 (02) 026001
- 60 Isshiki T, Sunakawa M, Vierhout M. et al. Upregulation of HSP90α in the lungs and circulation in sarcoidosis. Front Med (Lausanne) 2025; 12: 1532437
- 61 d'Alessandro M, Gangi S, Paggi I. et al. Diagnostic performance of CLEIA versus FEIA for KL-6 peripheral and alveolar concentrations in fibrotic interstitial lung diseases: A multicentre study. J Clin Lab Anal 2024; 38 (19–20): e25108
- 62 Arkema EV, Sachs MC, Dominicus A. et al. Inflammatory plasma protein levels are elevated years before sarcoidosis diagnosis: A nested case-control study in Sweden. Eur Respir J 2024; 64 (06) 2400277
- 63 Kaya H, Boyaci H, Argun Baris S, Basyigit I, Ozsoy OD, Maral Kir H. The predictive effects of adiponectin and irisin hormones on diagnosis and clinical involvement of sarcoidosis. BMC Pulm Med 2024; 24 (01) 623
- 64 Schrijver B, Göpfert J, La Distia Nora R. et al. Increased serum interferon activity in sarcoidosis compared to that in tuberculosis: Implication for diagnosis?. Heliyon 2024; 10 (18) e37103
- 65 Stapleton EM, Metwali N, Shlossman M. et al. Residential fungal β-(1,3)-D-glucan exposure is associated with decreased pulmonary function in fibrotic pulmonary sarcoidosis. Res Sq 2024; rs.3.rs-5220174
- 66 Greaves SA, Ravindran A, Santos RG. et al. CD4+ T cells in the lungs of acute sarcoidosis patients recognize an Aspergillus nidulans epitope. J Exp Med 2021; 218 (10) e20210785
- 67 Kraaijvanger R, Janssen Bonás M, Vorselaars ADM, Veltkamp M. Biomarkers in the diagnosis and prognosis of sarcoidosis: Current use and future prospects. Front Immunol 2020; 11: 1443
- 68 Kraaijvanger R, Janssen Bonás M, Paspali I. et al. Targeted proteomics in extracellular vesicles identifies biomarkers predictive for therapeutic response in sarcoidosis. ERJ Open Res 2025; 11 (02) 00672-02024
- 69 Funaguma S, Iida A, Saito Y. et al. Retrotrans-genomics identifies aberrant THE1B endogenous retrovirus fusion transcripts in the pathogenesis of sarcoidosis. Nat Commun 2025; 16 (01) 1318
- 70 Yuan S, Chen J, Geng J. et al. GWAS identifies genetic loci, lifestyle factors and circulating biomarkers that are risk factors for sarcoidosis. Nat Commun 2025; 16 (01) 2481
- 71 Banoei MM, Hashemi Shahraki A, Santos K, Holt G, Mirsaeidi M. Investigating metabolic phenotypes for sarcoidosis diagnosis and exploring immunometabolic profiles to unravel disease mechanisms. Metabolites 2024; 15 (01) 7
- 72 Yu K, Li W, Long W. et al. Proteome-wide Mendelian randomization identifies causal plasma proteins in interstitial lung disease. Sci Rep 2025; 15 (01) 2293
- 73 Kraaijvanger R, Ambarus CA, Damen J. et al. Simultaneous assessment of mTORC1, JAK/STAT, and NLRP3 inflammasome activation pathways in patients with sarcoidosis. Int J Mol Sci 2023; 24 (16) 12792
- 74 Smith GD, Ebrahim S. Mendelian randomization: Prospects, potentials, and limitations. Int J Epidemiol 2004; 33 (01) 30-42
- 75 Zheng J, Baird D, Borges M-C. et al. Recent developments in Mendelian randomization studies. Curr Epidemiol Rep 2017; 4 (04) 330-345
- 76 Rajkomar A, Dean J, Kohane I. Machine learning in medicine. N Engl J Med 2019; 380 (14) 1347-1358
- 77 Molina-Molina M, Agusti A, Crestani B. et al. Towards a global initiative for fibrosis treatment (GIFT). ERJ Open Res 2017; 3 (04) 00106-02017