RSS-Feed abonnieren
DOI: 10.1055/a-2677-6806
Animal Models of Porphyria with Hepatic Involvement
Funding This work was funded by NIH grant 1R01DK124412 to Kari Nejak-Bowen.

Abstract
The porphyrias are a group of metabolic disorders that are caused by defects in one of the eight enzymes that synthesize heme. A common feature of all porphyrias is accumulation of porphyrin precursors or porphyrins, which are intermediates of the heme biosynthesis pathway. Approximately 15% of heme biosynthesis occurs in the liver, and excessive hepatic production of porphyrin precursors caused by heme enzyme deficiencies can lead to neurovisceral manifestations. Additionally, in erythropoietic protoporphyria, porphyrins accumulate in the liver, leading to hepatic injury. These rare diseases have few effective medical therapies, and disease mechanisms are not always well understood. Animal models have provided a platform to study the pathophysiology of disease and test emerging therapies. In this review, the last of a three-part series, we describe the animal models that have been generated to study porphyrias with hepatic involvement. For each model, we discuss mechanisms of injury, phenotypic features, and the similarities and contrasts to human porphyria. We also describe preclinical studies that have utilized the model for therapeutic interventions. Overall, animal-based studies have made significant contributions to our understanding of porphyria and may lead to innovative therapies in the future.
Keywords
acute intermittent porphyria - variegate porphyria - hereditary coproporphyria - porphyria cutanea tarda - erythropoietic porphyriaNote
[Figs. 1], [2], and [3], as well as the graphical abstract, were prepared using BioRender.com.
Publikationsverlauf
Artikel online veröffentlicht:
21. August 2025
© 2025. Thieme. All rights reserved.
Thieme Medical Publishers, Inc.
333 Seventh Avenue, 18th Floor, New York, NY 10001, USA
-
References
- 1 Puy H, Gouya L, Deybach JC. Porphyrias. Lancet 2010; 375 (9718) 924-937
- 2 Anderson KE, Sassa SS, Bishop DF, Desnick RJ. Disorders of heme biosynthesis: X-linked sideroblastic anemia and the porphyrias. In: Scriver CR, Beaudet AL, Sly WS, Valle D. eds. The Metabolic Basis of Inherited Disease. 8th ed. New York: McGraw-Hill; 2001
- 3 Balogun O, Nejak-Bowen K. Understanding hepatic porphyrias: symptoms, treatments, and unmet needs. Semin Liver Dis 2024; 44 (02) 209-225
- 4 Balogun O, Nejak-Bowen K. The hepatic porphyrias: revealing the complexities of a rare disease. Semin Liver Dis 2023; 43 (04) 446-459
- 5 Yasuda M, Desnick RJ. Murine models of the human porphyrias: contributions toward understanding disease pathogenesis and the development of new therapies. Mol Genet Metab 2019; 128 (03) 332-341
- 6 Millar JW. Rifampicin-induced porphyria cutanea tarda. Br J Dis Chest 1980; 74 (04) 405-408
- 7 Lindberg RL, Porcher C, Grandchamp B. et al. Porphobilinogen deaminase deficiency in mice causes a neuropathy resembling that of human hepatic porphyria. Nat Genet 1996; 12 (02) 195-199
- 8 Yasuda M, Gan L, Chen B. et al. Homozygous hydroxymethylbilane synthase knock-in mice provide pathogenic insights into the severe neurological impairments present in human homozygous dominant acute intermittent porphyria. Hum Mol Genet 2019; 28 (11) 1755-1767
- 9 Conway AJ, Brown FC, Fullinfaw RO, Kile BT, Jane SM, Curtis DJ. A mouse model of hereditary coproporphyria identified in an ENU mutagenesis screen. Dis Model Mech 2017; 10 (08) 1005-1013
- 10 Phillips JD, Jackson LK, Bunting M. et al. A mouse model of familial porphyria cutanea tarda. Proc Natl Acad Sci U S A 2001; 98 (01) 259-264
- 11 Córdoba KM, Jericó D, Jiang L. et al. Systemic messenger RNA replacement therapy is effective in a novel clinically relevant model of acute intermittent porphyria developed in non-human primates. Gut 2025; 74 (02) 270-283
- 12 Hunter GA, Ferreira GC. Molecular enzymology of 5-aminolevulinate synthase, the gatekeeper of heme biosynthesis. Biochim Biophys Acta 2011; 1814 (11) 1467-1473
- 13 Eguchi A, Fukunaga S, Ogata K. et al. Chimeric mouse with humanized liver is an appropriate animal model to investigate mode of action for porphyria-mediated hepatocytotoxicity. Toxicol Pathol 2021; 49 (07) 1243-1254
- 14 Edwards SR, Shanley BC, Reynoldson JA. Neuropharmacology of delta-aminolaevulinic acid–I. Effect of acute administration in rodents. Neuropharmacology 1984; 23 (04) 477-481
- 15 Soonawalla ZF, Orug T, Badminton MN. et al. Liver transplantation as a cure for acute intermittent porphyria. Lancet 2004; 363 (9410) 705-706
- 16 Solis C, Martinez-Bermejo A, Naidich TP. et al. Acute intermittent porphyria: studies of the severe homozygous dominant disease provides insights into the neurologic attacks in acute porphyrias. Arch Neurol 2004; 61 (11) 1764-1770
- 17 Dowman JK, Gunson BK, Bramhall S, Badminton MN, Newsome PN. Liver transplantation from donors with acute intermittent porphyria. Ann Intern Med 2011; 154 (08) 571-572
- 18 Ricci A, Ventura P. Givosiran for the treatment of acute hepatic porphyria. Expert Rev Clin Pharmacol 2022; 15 (04) 383-393
- 19 Miyanari S. 13-week oral dose toxicity study of 5-aminolevulinic acid phosphate in rats. Jpn Pharmacol Ther 2011; 39: 513-524
- 20 Van Hillegersberg R, Van den Berg JW, Kort WJ, Terpstra OT, Wilson JH. Selective accumulation of endogenously produced porphyrins in a liver metastasis model in rats. Gastroenterology 1992; 103 (02) 647-651
- 21 Anderson KE, Drummond GS, Freddara U, Sardana MK, Sassa S. Porphyrogenic effects and induction of heme oxygenase in vivo by delta-aminolevulinic acid. Biochim Biophys Acta 1981; 676 (03) 289-299
- 22 Takahashi J, Misawa M, Murakami M, Mori T, Nomura K, Iwahashi H. 5-Aminolevulinic acid enhances cancer radiotherapy in a mouse tumor model. Springerplus 2013; 2: 602
- 23 Tanaka Y, Murayama Y, Matsumoto T. et al. Efficacy of 5-aminolevulinic acid-mediated photodynamic therapy in a mouse model of esophageal cancer. Oncol Lett 2020; 20 (04) 82
- 24 Kumar A, Pecquenard F, Baydoun M. et al. An efficient 5-aminolevulinic acid photodynamic therapy treatment for human hepatocellular carcinoma. Int J Mol Sci 2023; 24 (13) 24
- 25 Peng Q, Moan J, Warloe T, Nesland JM, Rimington C. Distribution and photosensitizing efficiency of porphyrins induced by application of exogenous 5-aminolevulinic acid in mice bearing mammary carcinoma. Int J Cancer 1992; 52 (03) 433-443
- 26 Bloomer JR. Hepatic protoporphyrin metabolism in patients with advanced protoporphyric liver disease. Yale J Biol Med 1997; 70 (04) 323-330
- 27 Matsunaga K, Fukunaga S, Abe J, Takeuchi H, Kitamoto S, Tomigahara Y. Comparative hepatotoxicity of a herbicide, epyrifenacil, in humans and rodents by comparing the dynamics and kinetics of its causal metabolite. J Pestic Sci 2021; 46 (04) 333-341
- 28 Fukunaga S, Ogata K, Eguchi A. et al. Evaluation of the mode of action and human relevance of liver tumors in male mice treated with epyrifenacil. Regul Toxicol Pharmacol 2022; 136: 105268
- 29 Kothadia JP, LaFreniere K, Shah JM. Acute hepatic porphyria. In: StatPearls. Treasure Island (FL): StatPearls Publishing; 2022
- 30 Bissell DM, Wang B. Acute hepatic porphyria. J Clin Transl Hepatol 2015; 3 (01) 17-26
- 31 Clavero S, Bishop DF, Haskins ME, Giger U, Kauppinen R, Desnick RJ. Feline acute intermittent porphyria: a phenocopy masquerading as an erythropoietic porphyria due to dominant and recessive hydroxymethylbilane synthase mutations. Hum Mol Genet 2010; 19 (04) 584-596
- 32 Lindberg RLP, Martini R, Baumgartner M. et al. Motor neuropathy in porphobilinogen deaminase-deficient mice imitates the peripheral neuropathy of human acute porphyria. J Clin Invest 1999; 103 (08) 1127-1134
- 33 Chen B, Wang M, Gan L, Zhang B, Desnick RJ, Yasuda M. Characterization of the hepatic transcriptome following phenobarbital induction in mice with AIP. Mol Genet Metab 2019; 128 (03) 382-390
- 34 Chacko B, Culp ML, Bloomer J. et al. Feasibility of cellular bioenergetics as a biomarker in porphyria patients. Mol Genet Metab Rep 2019; 19: 100451
- 35 Meyer RP, Lindberg RL, Hoffmann F, Meyer UA. Cytosolic persistence of mouse brain CYP1A1 in chronic heme deficiency. Biol Chem 2005; 386 (11) 1157-1164
- 36 Unzu C, Sampedro A, Mauleón I. et al. Sustained enzymatic correction by rAAV-mediated liver gene therapy protects against induced motor neuropathy in acute porphyria mice. Mol Ther 2011; 19 (02) 243-250
- 37 Homedan C, Laafi J, Schmitt C. et al. Acute intermittent porphyria causes hepatic mitochondrial energetic failure in a mouse model. Int J Biochem Cell Biol 2014; 51: 93-101
- 38 Homedan C, Schmitt C, Laafi J. et al. Mitochondrial energetic defects in muscle and brain of a Hmbs−/− mouse model of acute intermittent porphyria. Hum Mol Genet 2015; 24 (17) 5015-5023
- 39 Laafi J, Homedan C, Jacques C. et al. Pro-oxidant effect of ALA is implicated in mitochondrial dysfunction of HepG2 cells. Biochimie 2014; 106: 157-166
- 40 Tschudy DP, Welland FH, Collins A, Hunter Jr G. The effect of carbohydrate feeding on the induction of delta-aminolevulinic acid synthetase. Metabolism 1964; 13: 396-406
- 41 Collantes M, Serrano-Mendioroz I, Benito M. et al. Glucose metabolism during fasting is altered in experimental porphobilinogen deaminase deficiency. Hum Mol Genet 2016; 25 (07) 1318-1327
- 42 Serrano-Mendioroz I, Sampedro A, Mora MI. et al. Vitamin D-binding protein as a biomarker of active disease in acute intermittent porphyria. J Proteomics 2015; 127 (Pt B): 377-385
- 43 Ruspini SF, Zuccoli JR, Lavandera JV. et al. Effects of volatile anaesthetics on heme metabolism in a murine genetic model of Acute Intermittent Porphyria. A comparative study with other porphyrinogenic drugs. Biochim Biophys Acta, Gen Subj 2018; 1862 (06) 1296-1305
- 44 Yin Z, Wahlin S, Ellis EC, Harper P, Ericzon BG, Nowak G. Hepatocyte transplantation ameliorates the metabolic abnormality in a mouse model of acute intermittent porphyria. Cell Transplant 2014; 23 (09) 1153-1162
- 45 Unzu C, Sampedro A, Mauleón I. et al. Porphobilinogen deaminase over-expression in hepatocytes, but not in erythrocytes, prevents accumulation of toxic porphyrin precursors in a mouse model of acute intermittent porphyria. J Hepatol 2010; 52 (03) 417-424
- 46 Johansson A, Nowak G, Möller C, Blomberg P, Harper P. Adenoviral-mediated expression of porphobilinogen deaminase in liver restores the metabolic defect in a mouse model of acute intermittent porphyria. Mol Ther 2004; 10 (02) 337-343
- 47 Unzu C, Sampedro A, Mauleón I. et al. Helper-dependent adenoviral liver gene therapy protects against induced attacks and corrects protein folding stress in acute intermittent porphyria mice. Hum Mol Genet 2013; 22 (14) 2929-2940
- 48 Yasuda M, Bishop DF, Fowkes M, Cheng SH, Gan L, Desnick RJ. AAV8-mediated gene therapy prevents induced biochemical attacks of acute intermittent porphyria and improves neuromotor function. Mol Ther 2010; 18 (01) 17-22
- 49 D'Avola D, López-Franco E, Sangro B. et al. Phase I open label liver-directed gene therapy clinical trial for acute intermittent porphyria. J Hepatol 2016; 65 (04) 776-783
- 50 Serrano-Mendioroz I, Sampedro A, Alegre M, Enríquez de Salamanca R, Berraondo P, Fontanellas A. An inducible promoter responsive to different porphyrinogenic stimuli improves gene therapy vectors for acute intermittent porphyria. Hum Gene Ther 2018; 29 (04) 480-491
- 51 Serrano-Mendioroz I, Sampedro A, Serna N. et al. Bioengineered PBGD variant improves the therapeutic index of gene therapy vectors for acute intermittent porphyria. Hum Mol Genet 2018; 27 (21) 3688-3696
- 52 Jericó D, Luis EO, Cussó L. et al. Brain ventricular enlargement in human and murine acute intermittent porphyria. Hum Mol Genet 2020; 29 (19) 3211-3223
- 53 Jiang L, Berraondo P, Jericó D. et al. Systemic messenger RNA as an etiological treatment for acute intermittent porphyria. Nat Med 2018; 24 (12) 1899-1909
- 54 Bustad HJ, Toska K, Schmitt C. et al. A pharmacological chaperone therapy for acute intermittent porphyria. Mol Ther 2020; 28 (02) 677-689
- 55 Córdoba KM, Serrano-Mendioroz I, Jericó D. et al. Recombinant porphobilinogen deaminase targeted to the liver corrects enzymopenia in a mouse model of acute intermittent porphyria. Sci Transl Med 2022; 14 (627) eabc0700
- 56 Yasuda M, Gan L, Chen B. et al. RNAi-mediated silencing of hepatic Alas1 effectively prevents and treats the induced acute attacks in acute intermittent porphyria mice. Proc Natl Acad Sci U S A 2014; 111 (21) 7777-7782
- 57 Berger S, Stattmann M, Cicvaric A. et al. Severe hydroxymethylbilane synthase deficiency causes depression-like behavior and mitochondrial dysfunction in a mouse model of homozygous dominant acute intermittent porphyria. Acta Neuropathol Commun 2020; 8 (01) 38
- 58 Rudnick S, Phillips J, Bonkovsky H. Porphyrias Consortium of the Rare Diseases Clinical Research Network. Hepatoerythropoietic porphyria. In: Adam MP, Mirzaa GM, Pagon RA. et al, eds. GeneReviews. Seattle, WA: University of Washington, Seattle; 1993
- 59 Smith AG, Francis JE. Chemically-induced formation of an inhibitor of hepatic uroporphyrinogen decarboxylase in inbred mice with iron overload. Biochem J 1987; 246 (01) 221-226
- 60 Wang H, Long Q, Marty SD, Sassa S, Lin S. A zebrafish model for hepatoerythropoietic porphyria. Nat Genet 1998; 20 (03) 239-243
- 61 Phillips JD. Heme biosynthesis and the porphyrias. Mol Genet Metab 2019; 128 (03) 164-177
- 62 Brown FC, Scott N, Rank G. et al. ENU mutagenesis identifies the first mouse mutants reproducing human β-thalassemia at the genomic level. Blood Cells Mol Dis 2013; 50 (02) 86-92
- 63 Mori M, Gotoh S, Taketani S, Hiai H, Higuchi K. Hereditary cataract of the Nakano mouse: Involvement of a hypomorphic mutation in the coproporphyrinogen oxidase gene. Exp Eye Res 2013; 112: 45-50
- 64 Kang X, Shimada S, Miyahara H, Higuchi K, Mori M. BALB.NCT-Cpox nct is a unique mouse model of hereditary coproporphyria. Mol Genet Metab Rep 2023; 35: 100964
- 65 Andant C, Puy H, Bogard C. et al. Hepatocellular carcinoma in patients with acute hepatic porphyria: frequency of occurrence and related factors. J Hepatol 2000; 32 (06) 933-939
- 66 Kauppinen R, Mustajoki P. Acute hepatic porphyria and hepatocellular carcinoma. Br J Cancer 1988; 57 (01) 117-120
- 67 Ahangari A, Bäckström T, Innala E, Andersson C, Turkmen S. Acute intermittent porphyria symptoms during the menstrual cycle. Intern Med J 2015; 45 (07) 725-731
- 68 Singal AK, Anderson KE. Variegate porphyria. In: Adam MP, Everman DB, Mirzaa GM. et al eds, GeneReviews. Seattle, WA: University of Washington, Seattle; 2013
- 69 Desnick RJ, Balwani M, Anderson KE. 10 - Inherited porphyrias. In: Pyeritz RE, Korf BR, Grody WW. eds, Emery and Rimoin's Principles and Practice of Medical Genetics and Genomics (Seventh Edition). Academic Press; 2021: 373-411
- 70 Logan GM, Weimer MK, Ellefson M, Pierach CA, Bloomer JR. Bile porphyrin analysis in the evaluation of variegate porphyria. N Engl J Med 1991; 324 (20) 1408-1411
- 71 Medlock AE, Meissner PN, Davidson BP, Corrigall AV, Dailey HA. A mouse model for South African (R59W) variegate porphyria: construction and initial characterization. Cell Mol Biol (Noisy-le-grand) 2002; 48 (01) 71-78
- 72 Jericó D, Córdoba KM, Jiang L. et al. mRNA-based therapy in a rabbit model of variegate porphyria offers new insights into the pathogenesis of acute attacks. Mol Ther Nucleic Acids 2021; 25: 207-219
- 73 Klinger W, Müller D. The influence of allyl isopropyl acetamide on d-aminolevulinic acid synthetase and cytochrome P-450. Acta Biol Med Ger 1980; 39 (01) 107-112
- 74 Casanova-González MJ, Trapero-Marugán M, Jones EA, Moreno-Otero R. Liver disease and erythropoietic protoporphyria: a concise review. World J Gastroenterol 2010; 16 (36) 4526-4531
- 75 Fickert P, Stöger U, Fuchsbichler A. et al. A new xenobiotic-induced mouse model of sclerosing cholangitis and biliary fibrosis. Am J Pathol 2007; 171 (02) 525-536
- 76 Tephly TR, Gibbs AH, Ingall G, De Matteis F. Studies on the mechanism of experimental porphyria and ferrochelatase inhibition produced by 3,5-diethoxycarbonyl-1,4-dihydrocollidine. Int J Biochem 1980; 12 (5-6): 993-998
- 77 Saggi H, Maitra D, Jiang A. et al. Loss of hepatocyte β-catenin protects mice from experimental porphyria-associated liver injury. J Hepatol 2019; 70 (01) 108-117
- 78 Wolff K. Liver inclusions in erythropoietic protoporphyria. Eur J Clin Invest 1975; 5 (01) 21-26
- 79 Matilla A, Molland EA. A light and electron microscopic study of the liver in case of erythrohepatic protoporphyria and in griseofulvin-induced porphyria in mice. J Clin Pathol 1974; 27 (09) 698-709
- 80 MacDonald DM, Germain D, Perrot H. The histopathology and ultrastructure of liver disease in erythropoietic protoporphyria. Br J Dermatol 1981; 104 (01) 7-17
- 81 Inafuku K, Takamiyagi A, Oshiro M, Kinjo T, Nakashima Y, Nonaka S. Alteration of mRNA levels of delta-aminolevulinic acid synthase, ferrochelatase and heme oxygenase-1 in griseofulvin induced protoporphyria mice. J Dermatol Sci 1999; 19 (03) 189-198
- 82 Martinez MdelC, Afonso SG, Meiss RP, Buzaleh AM, Batlle A. Hepatic damage and oxidative stress induced by griseofulvin in mice. Cell Mol Biol (Noisy-le-grand) 2009; 55 (02) 127-139
- 83 Liu K, Yan J, Sachar M. et al. A metabolomic perspective of griseofulvin-induced liver injury in mice. Biochem Pharmacol 2015; 98 (03) 493-501
- 84 Takeshita K, Takajo T, Hirata H, Ono M, Utsumi H. In vivo oxygen radical generation in the skin of the protoporphyria model mouse with visible light exposure: an L-band ESR study. J Invest Dermatol 2004; 122 (06) 1463-1470
- 85 Martinez MdelC, Afonso SG, Buzaleh AM, Batlle A. Protective action of antioxidants on hepatic damage induced by griseofulvin. ScientificWorldJournal 2014; 2014: 982358
- 86 Tutois S, Montagutelli X, Da Silva V. et al. Erythropoietic protoporphyria in the house mouse. A recessive inherited ferrochelatase deficiency with anemia, photosensitivity, and liver disease. J Clin Invest 1991; 88 (05) 1730-1736
- 87 Boulechfar S, Lamoril J, Montagutelli X. et al. Ferrochelatase structural mutant (Fechm1Pas) in the house mouse. Genomics 1993; 16 (03) 645-648
- 88 Libbrecht L, Meerman L, Kuipers F, Roskams T, Desmet V, Jansen P. Liver pathology and hepatocarcinogenesis in a long-term mouse model of erythropoietic protoporphyria. J Pathol 2003; 199 (02) 191-200
- 89 Bloks VW, Plösch T, van Goor H. et al. Hyperlipidemia and atherosclerosis associated with liver disease in ferrochelatase-deficient mice. J Lipid Res 2001; 42 (01) 41-50
- 90 Lyoumi S, Abitbol M, Rainteau D. et al. Protoporphyrin retention in hepatocytes and Kupffer cells prevents sclerosing cholangitis in erythropoietic protoporphyria mouse model. Gastroenterology 2011; 141 (04) 1509-1519 , 1519.e1–1519.e3
- 91 Magness ST, Maeda N, Brenner DA. An exon 10 deletion in the mouse ferrochelatase gene has a dominant-negative effect and causes mild protoporphyria. Blood 2002; 100 (04) 1470-1477
- 92 Barman-Aksözen J, CWiek P, Bansode VB. et al. Modeling the ferrochelatase c.315-48C modifier mutation for erythropoietic protoporphyria (EPP) in mice. Dis Model Mech 2017; 10 (03) 225-233
- 93 Fontanellas A, Mazurier F, Landry M. et al. Reversion of hepatobiliary alterations By bone marrow transplantation in a murine model of erythropoietic protoporphyria. Hepatology 2000; 32 (01) 73-81
- 94 Duchartre Y, Petit N, Moya C. et al. Neonatal bone marrow transplantation prevents liver disease in a murine model of erythropoietic protoporphyria. J Hepatol 2011; 55 (01) 162-170
- 95 Pawliuk R, Bachelot T, Wise RJ, Mathews-Roth MM, Leboulch P. Long-term cure of the photosensitivity of murine erythropoietic protoporphyria by preselective gene therapy. Nat Med 1999; 5 (07) 768-773
- 96 Richard E, Robert E, Cario-André M. et al. Hematopoietic stem cell gene therapy of murine protoporphyria by methylguanine-DNA-methyltransferase-mediated in vivo drug selection. Gene Ther 2004; 11 (22) 1638-1647
- 97 Ichikawa DM, Abdin O, Alerasool N. et al. A universal deep-learning model for zinc finger design enables transcription factor reprogramming. Nat Biotechnol 2023; 41 (08) 1117-1129
- 98 Gonzalez-Mosquera LF, Sonthalia S. Acute intermittent porphyria. In: StatPearls. Treasure Island (FL): StatPearls Publishing; 2023
- 99 Bustad HJ, Kallio JP, Vorland M. et al. Acute intermittent porphyria: an overview of therapy developments and future perspectives focusing on stabilisation of HMBS and proteostasis regulators. Int J Mol Sci 2021; 22 (02) 22
- 100 Sardh E, Barbaro M. Acute intermittent porphyria. In: Adam MP, Feldman J, Mirzaa GM. et al, eds. GeneReviews. Seattle, WA: University of Washington, Seattle; 2005
- 101 Bonkovsky HL, Maddukuri VC, Yazici C. et al. Acute porphyrias in the USA: features of 108 subjects from porphyrias consortium. Am J Med 2014; 127 (12) 1233-1241
- 102 Elder GH, Hift RJ, Meissner PN. The acute porphyrias. Lancet 1997; 349 (9065) 1613-1617
- 103 Hanada S, Snider NT, Brunt EM, Hollenberg PF, Omary MB. Gender dimorphic formation of mouse Mallory-Denk bodies and the role of xenobiotic metabolism and oxidative stress. Gastroenterology 2010; 138 (04) 1607-1617
- 104 Davies R, Schuurman A, Barker CR. et al. Hepatic gene expression in protoporphyic Fech mice is associated with cholestatic injury but not a marked depletion of the heme regulatory pool. Am J Pathol 2005; 166 (04) 1041-1053
- 105 Abitbol M, Bernex F, Puy H. et al. A mouse model provides evidence that genetic background modulates anemia and liver injury in erythropoietic protoporphyria. Am J Physiol Gastrointest Liver Physiol 2005; 288 (06) G1208-G1216
- 106 Haybaeck J, Stumptner C, Thueringer A. et al. Genetic background effects of keratin 8 and 18 in a DDC-induced hepatotoxicity and Mallory-Denk body formation mouse model. Lab Invest 2012; 92 (06) 857-867
- 107 Afonso S, Vanore G, Batlle A. Protoporphyrin IX and oxidative stress. Free Radic Res 1999; 31 (03) 161-170
- 108 Maitra D, Elenbaas JS, Whitesall SE, Basrur V, D'Alecy LG, Omary MB. Ambient light promotes selective subcellular proteotoxicity after endogenous and exogenous porphyrinogenic stress. J Biol Chem 2015; 290 (39) 23711-23724
- 109 Singla A, Griggs NW, Kwan R. et al. Lamin aggregation is an early sensor of porphyria-induced liver injury. J Cell Sci 2013; 126 (Pt 14): 3105-3112
- 110 Maitra D, Bragazzi Cunha J, Elenbaas JS, Bonkovsky HL, Shavit JA, Omary MB. Porphyrin-induced protein oxidation and aggregation as a mechanism of porphyria-associated cell injury. Cell Mol Gastroenterol Hepatol 2019; 8 (04) 535-548