Subscribe to RSS
DOI: 10.1055/a-2655-4120
Current Understandings on Biological Characteristics of Thrombolytics in Acute Ischemic Stroke

Abstract
Acute ischemic stroke leads to rapid and progressive neuronal losses. Early revascularization with thrombolytics and/or endovascular thrombectomy plays an important role in salvaging brain infarction. Currently, alteplase and tenecteplase are approved thrombolytics for the treatment of acute ischemic stroke, whereas favorable outcomes of reteplase have recently been reported in a phase 3 clinical trial. These thrombolytics share common and distinct pharmacological characteristics, which contribute to their efficacy and safety in patients. In this review, biological profiles of alteplase, tenecteplase, and reteplase, including their advantages versus disadvantages in acute ischemic stroke, are discussed. Tenecteplase has high fibrin specificity, increased resistance to plasminogen activator inhibitor-1 (PAI-1), wider concentration–response curve, and less off-target activities, which support its efficacy with low incidence of symptomatic intracranial hemorrhage (sICH). Reteplase greatly penetrates into the clot with prolonged retention, generating durable clot lysis. This activity might be associated with its excellent clinical outcomes in patients, although reteplase is sensitive to PAI-1. Notably, reteplase and alteplase produce off-target activities by inducing hypofibrinogenemia and hypoplasminogenemia, which may increase risk of hemorrhagic transformation. Moreover, orolingual angioedema is a life-threatening complication of all thrombolytics. Mechanistically, an increase in plasmin by thrombolytics leads to bradykinin generation. In addition, plasmin activates mast cell degranulation (e.g., histamine release). Together, these biopharmacological data of thrombolytics promote insights into their clinical outcomes, and might provide comprehensive bases for future research.
Publication History
Received: 13 June 2025
Accepted: 14 July 2025
Accepted Manuscript online:
15 July 2025
Article published online:
25 July 2025
© 2025. Thieme. All rights reserved.
Thieme Medical Publishers, Inc.
333 Seventh Avenue, 18th Floor, New York, NY 10001, USA
-
References
- 1 Pu L, Wang L, Zhang R, Zhao T, Jiang Y, Han L. Projected global trends in ischemic stroke incidence, deaths and disability-adjusted life years from 2020 to 2030. Stroke 2023; 54 (05) 1330-1339
- 2 Bhagavati S. Intravenous thrombolysis for ischaemic strokes: a call for reappraisal. Brain 2015; 138 (Pt 4): e341-e341
- 3 Woo HG, Kim H-G, Lee KM. et al. Wall shear stress associated with stroke occurrence and mechanisms in middle cerebral artery atherosclerosis. J Stroke 2023; 25 (01) 132-140
- 4 Hariri N, Russell T, Kasper G, Lurie F. Shear rate is a better marker of symptomatic ischemic cerebrovascular events than velocity or diameter in severe carotid artery stenosis. J Vasc Surg 2019; 69 (02) 448-452
- 5 Casa LDC, Ku DN. Thrombus formation at high shear rates. Annu Rev Biomed Eng 2017; 19 (01) 415-433
- 6 Saver JL. Time is brain—quantified. Stroke 2006; 37 (01) 263-266
- 7 Alsbrook DL, Di Napoli M, Bhatia K. et al. Neuroinflammation in acute ischemic and hemorrhagic stroke. Curr Neurol Neurosci Rep 2023; 23 (08) 407-431
- 8 Liu Q, Shi K, Wang Y, Shi F-D. Neurovascular inflammation and complications of thrombolysis therapy in stroke. Stroke 2023; 54 (10) 2688-2697
- 9 Powers WJ, Rabinstein AA, Ackerson T. et al. Guidelines for the early management of patients with acute ischemic stroke: 2019 update to the 2018 guidelines for the early management of acute ischemic stroke: a guideline for healthcare professionals from the American Heart Association/American Stroke Association. Stroke 2019; 50 (12) e344-e418
- 10 Emberson J, Lees KR, Lyden P. et al; Stroke Thrombolysis Trialists' Collaborative Group. Effect of treatment delay, age, and stroke severity on the effects of intravenous thrombolysis with alteplase for acute ischaemic stroke: a meta-analysis of individual patient data from randomised trials. Lancet 2014; 384 (9958): 1929-1935
- 11 Wichaiyo S, Parichatikanond W, Rattanavipanon W. Glenzocimab: a GPVI (glycoprotein VI)-targeted potential antiplatelet agent for the treatment of acute ischemic stroke. Stroke 2022; 53 (11) 3506-3513
- 12 Kaste M. Approval of alteplase in Europe: will it change stroke management?. Lancet Neurol 2003; 2 (04) 207-208
- 13 Ho-Tin-Noé B, Desilles J-P, Mazighi M. Thrombus composition and thrombolysis resistance in stroke. Res Pract Thromb Haemost 2023; 7 (04) 100178
- 14 Zhu A, Rajendram P, Tseng E, Coutts SB, Yu AYX. Alteplase or tenecteplase for thrombolysis in ischemic stroke: an illustrated review. Res Pract Thromb Haemost 2022; 6 (06) e12795
- 15 Stewart RJ, Fredenburgh JC, Leslie BA, Keyt BA, Rischke JA, Weitz JI. Identification of the mechanism responsible for the increased fibrin specificity of TNK-tissue plasminogen activator relative to tissue plasminogen activator. J Biol Chem 2000; 275 (14) 10112-10120
- 16 Keyt BA, Paoni NF, Refino CJ. et al. A faster-acting and more potent form of tissue plasminogen activator. Proc Natl Acad Sci U S A 1994; 91 (09) 3670-3674
- 17 Menon BK, Buck BH, Singh N. et al; AcT Trial Investigators. Intravenous tenecteplase compared with alteplase for acute ischaemic stroke in Canada (AcT): a pragmatic, multicentre, open-label, registry-linked, randomised, controlled, non-inferiority trial. Lancet 2022; 400 (10347): 161-169
- 18 Li S, Gu H-Q, Li H. et al; RAISE Investigators. Reteplase versus alteplase for acute ischemic stroke. N Engl J Med 2024; 390 (24) 2264-2273
- 19 Risman RA, Kirby NC, Bannish BE, Hudson NE, Tutwiler V. Fibrinolysis: an illustrated review. Res Pract Thromb Haemost 2023; 7 (02) 100081
- 20 Chapin JC, Hajjar KA. Fibrinolysis and the control of blood coagulation. Blood Rev 2015; 29 (01) 17-24
- 21 Tjärnlund-Wolf A, Brogren H, Lo EH, Wang X. Plasminogen activator inhibitor-1 and thrombotic cerebrovascular diseases. Stroke 2012; 43 (10) 2833-2839
- 22 Reed GL, Houng AK, Singh S, Wang D. α2-Antiplasmin: new insights and opportunities for ischemic stroke. Semin Thromb Hemost 2017; 43 (02) 191-199
- 23 Hosomi N, Lucero J, Heo JH, Koziol JA, Copeland BR, del Zoppo GJ. Rapid differential endogenous plasminogen activator expression after acute middle cerebral artery occlusion. Stroke 2001; 32 (06) 1341-1348
- 24 Jauquet M, Gagnepain P, La Porte E. et al. Endogenous tPA levels: a biomarker for discriminating hemorrhagic stroke from ischemic stroke and stroke mimics. Ann Clin Transl Neurol 2024; 11 (11) 2877-2890
- 25 Kim SH, Han SW, Kim EH. et al. Plasma fibrinolysis inhibitor levels in acute stroke patients with thrombolysis failure. J Clin Neurol 2005; 1 (02) 142-147
- 26 Székely EG, Orbán-Kálmándi R, Szegedi I. et al. Low α2-plasmin inhibitor antigen levels on admission are associated with more severe stroke and unfavorable outcomes in acute ischemic stroke patients treated with intravenous thrombolysis. Front Cardiovasc Med 2022; 9: 901286
- 27 Albers GW, Jumaa M, Purdon B. et al; TIMELESS Investigators. Tenecteplase for stroke at 4.5 to 24 hours with perfusion—imaging selection. N Engl J Med 2024; 390 (08) 701-711
- 28 Cheng X, Hong L, Lin L. et al; CHABLIS-T II Collaborators. Tenecteplase thrombolysis for stroke up to 24 hours after onset with perfusion imaging selection: the CHABLIS-T II randomized clinical trial. Stroke 2025; 56 (02) 344-354
- 29 Xiong Y, Campbell BCV, Schwamm LH. et al; TRACE-III Investigators. Tenecteplase for ischemic stroke at 4.5 to 24 hours without thrombectomy. N Engl J Med 2024; 391 (03) 203-212
- 30 Staessens S, Denorme F, Francois O. et al. Structural analysis of ischemic stroke thrombi: histological indications for therapy resistance. Haematologica 2020; 105 (02) 498-507
- 31 Jolugbo P, Ariëns RAS. Thrombus composition and efficacy of thrombolysis and thrombectomy in acute ischemic stroke. Stroke 2021; 52 (03) 1131-1142
- 32 Kitano T, Hori Y, Okazaki S. et al. An older thrombus delays reperfusion after mechanical thrombectomy for ischemic stroke. Thromb Haemost 2022; 122 (03) 415-426
- 33 Shimizu H, Hatakeyama K, Saito K. et al. Age and composition of the thrombus retrieved by mechanical thrombectomy from patients with acute ischemic stroke are associated with revascularization and clinical outcomes. Thromb Res 2022; 219: 60-69
- 34 Mereuta OM, Rossi R, Douglas A. et al. Characterization of the “white” appearing clots that cause acute ischemic stroke. J Stroke Cerebrovasc Dis 2021; 30 (12) 106127
- 35 Zhang X, Fu X, Ren Z, Zhou X, Ma Q. Relationship between thrombus composition and prognosis in patients with acute ischemic stroke undergoing mechanical thrombectomy. J Clin Neurosci 2024; 126: 46-51
- 36 Vandelanotte S, François O, Desender L. et al. R-tPA resistance is specific for platelet-rich stroke thrombi and can be overcome by targeting nonfibrin components. Stroke 2024; 55 (05) 1181-1190
- 37 Kamalian S, Morais LT, Pomerantz SR. et al. Clot length distribution and predictors in anterior circulation stroke: implications for intra-arterial therapy. Stroke 2013; 44 (12) 3553-3556
- 38 Riedel CH, Zimmermann P, Jensen-Kondering U, Stingele R, Deuschl G, Jansen O. The importance of size: successful recanalization by intravenous thrombolysis in acute anterior stroke depends on thrombus length. Stroke 2011; 42 (06) 1775-1777
- 39 Anand S, Diamond SL. Computer simulation of systemic circulation and clot lysis dynamics during thrombolytic therapy that accounts for inner clot transport and reaction. Circulation 1996; 94 (04) 763-774
- 40 Collet JP, Montalescot G, Lesty C, Weisel JW. A structural and dynamic investigation of the facilitating effect of glycoprotein IIb/IIIa inhibitors in dissolving platelet-rich clots. Circ Res 2002; 90 (04) 428-434
- 41 Collet JP, Montalescot G, Lesty C. et al. Disaggregation of in vitro preformed platelet-rich clots by abciximab increases fibrin exposure and promotes fibrinolysis. Arterioscler Thromb Vasc Biol 2001; 21 (01) 142-148
- 42 Blinc A, Keber D, Lahajnar G, Stegnar M, Zidanšek A, Demsar F. Lysing patterns of retracted blood clots with diffusion or bulk flow transport of plasma with urokinase into clots—a magnetic resonance imaging study in vitro. Thromb Haemost 1992; 68 (06) 667-671
- 43 Cines DB, Lebedeva T, Nagaswami C. et al. Clot contraction: compression of erythrocytes into tightly packed polyhedra and redistribution of platelets and fibrin. Blood 2014; 123 (10) 1596-1603
- 44 Morrow GB, Mutch NJ. Past, present, and future perspectives of plasminogen activator inhibitor 1 (PAI-1). Semin Thromb Hemost 2023; 49 (03) 305-313
- 45 Huebner BR, Moore EE, Moore HB. et al. Thrombin provokes degranulation of platelet α-granules leading to the release of active plasminogen activator inhibitor-1 (PAI-1). Shock 2018; 50 (06) 671-676
- 46 Denorme F, De Meyer SF. The VWF-GPIb axis in ischaemic stroke: lessons from animal models. Thromb Haemost 2016; 116 (04) 597-604
- 47 Tóth NK, Székely EG, Czuriga-Kovács KR. et al. Elevated factor VIII and von Willebrand factor levels predict unfavorable outcome in stroke patients treated with intravenous thrombolysis. Front Neurol 2018; 8: 721
- 48 van Moorsel MVA, de Maat S, Vercruysse K. et al. VWF-targeted thrombolysis to overcome rh-tPA resistance in experimental murine ischemic stroke models. Blood 2022; 140 (26) 2844-2848
- 49 Yogendrakumar V, Vandelanotte S, Mistry EA. et al. Emerging adjuvant thrombolytic therapies for acute ischemic stroke reperfusion. Stroke 2024; 55 (10) 2536-2546
- 50 Juega J, Li J, Palacio-Garcia C. et al; ITACAT study group. Granulocytes-rich thrombi in cerebral large vessel occlusion are associated with increased stiffness and poorer revascularization outcomes. Neurotherapeutics 2023; 20 (04) 1167-1176
- 51 Lapostolle A, Loyer C, Elhorany M. et al. Neutrophil extracellular traps in ischemic stroke thrombi are associated with poor clinical outcome. Stroke Vasc Interv Neurol 2023; 3 (03)
- 52 Mengozzi L, Barison I, Malý M. et al. Neutrophil extracellular traps and thrombolysis resistance: new insights for targeting therapies. Stroke 2024; 55 (04) 963-971
- 53 Liaptsi E, Merkouris E, Polatidou E. et al. Targeting neutrophil extracellular traps for stroke prognosis: a promising path. Neurol Int 2023; 15 (04) 1212-1226
- 54 Datsi A, Piotrowski L, Markou M. et al. Stroke-derived neutrophils demonstrate higher formation potential and impaired resolution of CD66b + driven neutrophil extracellular traps. BMC Neurol 2022; 22 (01) 186
- 55 Hommel M, Cornu C, Boutitie F, Boissel JP. Multicenter Acute Stroke Trial–Europe Study Group. Thrombolytic therapy with streptokinase in acute ischemic stroke. N Engl J Med 1996; 335 (03) 145-150
- 56 Albers GW, von Kummer R, Truelsen T. et al; DIAS-3 Investigators. Safety and efficacy of desmoteplase given 3-9 h after ischaemic stroke in patients with occlusion or high-grade stenosis in major cerebral arteries (DIAS-3): a double-blind, randomised, placebo-controlled phase 3 trial. Lancet Neurol 2015; 14 (06) 575-584
- 57 Wagstaff AJ, Gillis JC, Goa KL. Alteplase. A reappraisal of its pharmacology and therapeutic use in vascular disorders other than acute myocardial infarction. Drugs 1995; 50 (02) 289-316
- 58 Nordt TK, Bode C. Thrombolysis: newer thrombolytic agents and their role in clinical medicine. Heart 2003; 89 (11) 1358-1362
- 59 Huang X, Moreton FC, Kalladka D. et al. Coagulation and fibrinolytic activity of tenecteplase and alteplase in acute ischemic stroke. Stroke 2015; 46 (12) 3543-3546
- 60 Li S, Wang X, Jin A. et al. Safety and efficacy of reteplase versus alteplase for acute ischemic stroke: a phase 2 randomized controlled trial. Stroke 2024; 55 (02) 366-375
- 61 Hoffmeister HM, Kastner C, Szabo S. et al. Fibrin specificity and procoagulant effect related to the kallikrein-contact phase system and to plasmin generation with double-bolus reteplase and front-loaded alteplase thrombolysis in acute myocardial infarction. Am J Cardiol 2000; 86 (03) 263-268
- 62 Meierhenrich R, Carlsson J, Seifried E. et al. Effect of reteplase on hemostasis variables: analysis of fibrin specificity, relation to bleeding complications and coronary patency. Int J Cardiol 1998; 65 (01) 57-63
- 63 Smalling RW, Bode C, Kalbfleisch J. et al; RAPID Investigators. More rapid, complete, and stable coronary thrombolysis with bolus administration of reteplase compared with alteplase infusion in acute myocardial infarction. Circulation 1995; 91 (11) 2725-2732
- 64 Correa-Paz C, Pérez-Mato M, Bellemain-Sagnard M. et al. Pharmacological preclinical comparison of tenecteplase and alteplase for the treatment of acute stroke. J Cereb Blood Flow Metab 2024; 44 (08) 1306-1318
- 65 Miller SE, Warach SJ. Evolving thrombolytics: from alteplase to tenecteplase. Neurotherapeutics 2023; 20 (03) 664-678
- 66 Marcos-Contreras OA, Ganguly K, Yamamoto A. et al. Clot penetration and retention by plasminogen activators promote fibrinolysis. Biochem Pharmacol 2013; 85 (02) 216-222
- 67 Blinc A, Kennedy SD, Bryant RG, Marder VJ, Francis CW. Flow through clots determines the rate and pattern of fibrinolysis. Thromb Haemost 1994; 71 (02) 230-235
- 68 Blinc A, Planinsic G, Keber D. et al. Dependence of blood clot lysis on the mode of transport of urokinase into the clot—a magnetic resonance imaging study in vitro. Thromb Haemost 1991; 65 (05) 549-552
- 69 Blinc A, Francis CW. Transport processes in fibrinolysis and fibrinolytic therapy. Thromb Haemost 1996; 76 (04) 481-491
- 70 Wang S, Guo X, Xiu W. et al. Accelerating thrombolysis using a precision and clot-penetrating drug delivery strategy by nanoparticle-shelled microbubbles. Sci Adv 2020; 6 (31) eaaz8204
- 71 Shahid S, Saeed H, Iqbal M. et al. Comparative efficacy and safety of tissue plasminogen activators (tPA) in acute ischemic stroke: a systematic review and network meta-analysis of randomized controlled trials. J Stroke Cerebrovasc Dis 2025; 34 (03) 108230
- 72 Xie S, Mo C, Cao W. et al. Bacteria-propelled microtubular motors for efficient penetration and targeting delivery of thrombolytic agents. Acta Biomater 2022; 142: 49-59
- 73 Leach JK, Patterson E, O'Rear EA. Distributed intraclot thrombolysis: mechanism of accelerated thrombolysis with encapsulated plasminogen activators. J Thromb Haemost 2004; 2 (09) 1548-1555
- 74 Ren T, Mi Y, Wei J. et al. Advances in nano-functional materials in targeted thrombolytic drug delivery. Molecules 2024; 29 (10) 2325
- 75 Rijken DC, Sakharov DV. Basic principles in thrombolysis: regulatory role of plasminogen. Thromb Res 2001; 103 (Suppl. 01) S41-S49
- 76 Nishino N, Kakkar VV, Scully MF. Influence of intrinsic and extrinsic plasminogen upon the lysis of thrombi in vitro. Thromb Haemost 1991; 66 (06) 672-677
- 77 Coutts SB, Dubuc V, Mandzia J. et al; TEMPO-1 Investigators. Tenecteplase-tissue-type plasminogen activator evaluation for minor ischemic stroke with proven occlusion. Stroke 2015; 46 (03) 769-774
- 78 Campbell BCV, Mitchell PJ, Churilov L. et al; EXTEND-IA TNK Part 2 investigators. Effect of intravenous tenecteplase dose on cerebral reperfusion before thrombectomy in patients with large vessel occlusion ischemic stroke: the EXTEND-IA TNK Part 2 randomized clinical trial. JAMA 2020; 323 (13) 1257-1265
- 79 Desilles J-P, Loyau S, Syvannarath V. et al. Alteplase reduces downstream microvascular thrombosis and improves the benefit of large artery recanalization in stroke. Stroke 2015; 46 (11) 3241-3248
- 80 Lu J, Hu P, Wei G, Luo Q, Qiao J, Geng D. Effect of alteplase on platelet function and receptor expression. J Int Med Res 2019; 47 (04) 1731-1739
- 81 Serebruany VL, Malinin AI, Callahan KP. et al; Assessment of the Safety and Efficacy of a New Thrombolytic Agent platelet substudy. Effect of tenecteplase versus alteplase on platelets during the first 3 hours of treatment for acute myocardial infarction: the Assessment of the Safety and Efficacy of a New Thrombolytic Agent (ASSENT-2) platelet substudy. Am Heart J 2003; 145 (04) 636-642
- 82 Moser M, Nordt T, Peter K. et al. Platelet function during and after thrombolytic therapy for acute myocardial infarction with reteplase, alteplase, or streptokinase. Circulation 1999; 100 (18) 1858-1864
- 83 Gurbel PA, Serebruany VL, Shustov AR. et al. Effects of reteplase and alteplase on platelet aggregation and major receptor expression during the first 24 hours of acute myocardial infarction treatment. GUSTO-III Investigators. Global Use of Strategies to Open Occluded Coronary Arteries. J Am Coll Cardiol 1998; 31 (07) 1466-1473
- 84 Llevadot J, Giugliano RP, Antman EM. Bolus fibrinolytic therapy in acute myocardial infarction. JAMA 2001; 286 (04) 442-449
- 85 Hong JM, Kim DS, Kim M. Hemorrhagic transformation after ischemic stroke: mechanisms and management. Front Neurol 2021; 12: 703258
- 86 Liu C, Xie J, Sun S. et al. Hemorrhagic transformation after tissue plasminogen activator treatment in acute ischemic stroke. Cell Mol Neurobiol 2022; 42 (03) 621-646
- 87 Spronk E, Sykes G, Falcione S. et al. Hemorrhagic transformation in ischemic stroke and the role of inflammation. Front Neurol 2021; 12: 661955
- 88 Zubair AS, Sheth KN. Hemorrhagic conversion of acute ischemic stroke. Neurotherapeutics 2023; 20 (03) 705-711
- 89 Srisurapanont K, Uawithya E, Dhanasomboon P, Pollasen N, Thiankhaw K. Comparative efficacy and safety among different doses of tenecteplase for acute ischemic stroke: a systematic review and network meta-analysis. J Stroke Cerebrovasc Dis 2024; 33 (08) 107822
- 90 Shi K, Zou M, Jia D-M. et al. tPA mobilizes immune cells that exacerbate hemorrhagic transformation in stroke. Circ Res 2021; 128 (01) 62-75
- 91 Yaghi S, Willey JZ, Cucchiara B. et al; American Heart Association Stroke Council; Council on Cardiovascular and Stroke Nursing; Council on Clinical Cardiology; and Council on Quality of Care and Outcomes Research. Treatment and outcome of hemorrhagic transformation after intravenous alteplase in acute ischemic stroke: a scientific statement for healthcare professionals from the American Heart Association/American Stroke Association. Stroke 2017; 48 (12) e343-e361
- 92 Chilovi BV, Rozzini L, Padovani A. Parkinsonian signs in subjects with mild cognitive impairment. Neurology 2006; 67 (01) 182-183 , author reply 182–183
- 93 De Los Rios La Rosa F, Starosciak AK, Wolf B. Thrombolysis of a stroke patient with history of rtPA-associated angioedema. Neurol Clin Pract 2017; 7 (06) 541-543
- 94 Dellabella A, May A, Sofio B. Angioedema following tenecteplase for acute ischemic stroke. Stroke 2024; 55 (08) e242-e244
- 95 Shi G, Lv J, Wu W, Zhou R. Ipsilateral orolingual angioedema following rhTNK-tPA administration for acute ischemic stroke. Am J Emerg Med 2024; 77: 231.e1-231.e3
- 96 Salvaris PJ, Laing J. Orolingual angioedema treated with icatibant post-thrombolysis for ischaemic stroke. J Clin Neurosci 2018; 49: 38-39
- 97 El Labban M, El Zibaoui R, Amadi AC, Zareen T, Khan SA. Life-threatening tPA-associated angioedema: a rare case report and critical review. Am J Case Rep 2024; 25: e944221
- 98 Fröhlich K, Macha K, Gerner ST. et al. Angioedema in stroke patients with thrombolysis. Stroke 2019; 50 (07) 1682-1687
- 99 Napolitano F, Montuori N. The role of the plasminogen activation system in angioedema: novel insights on the pathogenesis. J Clin Med 2021; 10 (03) 518
- 100 Brown E, Campana C, Zimmerman J, Brooks S. Icatibant for the treatment of orolingual angioedema following the administration of tissue plasminogen activator. Am J Emerg Med 2018; 36 (06) 1125.e1-1125.e2
- 101 Theodorou A, Dimitriadou EM, Tzanetakos D. et al. Icatibant averting mechanical ventilation in acute ischemic stroke patient with alteplase-induced orolingual angioedema. Eur J Neurol 2024; 31 (04) e16173
- 102 Cheong E, Dodd L, Smith W, Kleinig T. Icatibant as a potential treatment of life-threatening alteplase-induced angioedema. J Stroke Cerebrovasc Dis 2018; 27 (02) e36-e37