Subscribe to RSS
DOI: 10.1055/a-2637-5118
Die Rekonstruktion komplexer Thoraxwanddefekte mit freien Lappenplastiken und die Wahl des richtigen Anschlussgefäßes
The Reconstruction of Complex Thoracic Defects with Free Flaps and the Choice of the Appropriate Recipient Vessel
Zusammenfassung
Hintergrund
Ausgedehnte Thoraxwanddefekte können durch die Resektion maligner Tumoren oder durch eine Sternumosteomyelitis nach kardiochirurgischen Eingriffen entstehen. Das Ziel dieser Studie ist es, die Durchführbarkeit der Rekonstruktion mit freien Lappenplastiken unter Berücksichtigung der Anschlussgefäßsituation, operative Komplikationen und das rekonstruktive Ergebnis zu analysieren.
Patienten/Materialien und Methoden
In der bizentrischen retrospektiven klinischen Studie wurden alle Patienten eingeschlossen, bei denen im Zeitraum Januar 2013 bis September 2024 eine freie Lappenplastik zur Rekonstruktion eines ausgedehnten Thoraxwanddefektes transplantiert wurde. Das Ziel war es, operative Details und Ergebnisse sowie Komplikationsraten auszuwerten. In einer Subgruppenanalyse wurden außerdem Komplikationen und Ergebnisse von Lappenplastiken, bei denen zusätzlich eine arteriovenöser Gefäßschleife (AVL) als Anschlussgefäß notwendig war, mit denen ohne zusätzliche gefäßchirurgische Maßnahmen verglichen.
Ergebnisse
Insgesamt wurde bei 107 Patienten (n = 66, 62% nach herzchirurgischer Operation; n = 41, 38% nach onkologischer Operation) eine Thoraxwandrekonstruktion mit einer freien myokutanen Tensor-fasciae-latae- (TFL, n = 47, 44%), myokutanen Vastus-lateralis-Muskellappenplastik (VL, n = 37, 35%), kombinierten Vastus-lateralis-Anterior-lateral-Thigh- (kVL-ALT, n = 17, 16%), kombinierten Vastus-lateralis-Tensor-fasciae-latae-Muskellappenplastik (kVL-TFL, n = 2, 2%), einer Anterior-lateral-Thigh- (ALT, n = 2, 2%) oder einer transversen Rectus-abdominis-Muskellappenplastik (TRAM, n = 2, 2%) durchgeführt. Bei 39 Rekonstruktion (36%) war simultan eine AVL-Anlage notwendig. Insgesamt traten postoperativ 6 Thrombosen der Lappenstielgefäße auf (6%). Vollständige Lappennekrosen traten in 3 Fällen (3%; VL, n = 2; kVL-ALTL, n = 1) und partielle Lappennekrosen traten bei 8 Lappenplastiken auf (8%; TFL, n = 3; kVL-ALT, n = 2; VL, n = 2; TRAM, n = 1). Der Vergleich postoperativer chirurgischer Komplikationen zwischen Rekonstruktionen mit und ohne simultane AVL-Anlage zeigte keine signifikanten Unterschiede hinsichtlich venöser Thrombosen (n = 0 vs. n = 3), arterieller Thrombosen (n = 2 vs. n = 1), partieller Lappennekrose (n = 3 vs. n = 5) sowie totaler Lappennekrose (n = 0 vs. n = 3).
Schlussfolgerung
Diese Studie zeigt, dass die Rekonstruktion ausgedehnter Thoraxwanddefekte mit freien VL- oder TFL-Lappenplastiken mit nur geringen Komplikationsraten durchführbar ist, auch wenn dies simultan eine AVL-Anlage erfordert.
Abstract
Purpose
Extensive thoracic wall defects can arise from the resection of malignant tumours or from sternal osteomyelitis following cardiac surgery. The aim of this study is to analyse the feasibility of reconstruction with free flaps, and considers recipient vessel conditions, surgical complications, and reconstructive outcomes.
Patients/Materials and Methods
In this bicentric retrospective clinical study, all patients who underwent free flap transplantation for the reconstruction of an extensive thoracic wall defect between January 2013 and September 2024 were included. The objective was to evaluate surgical details and outcomes as well as surgical and medical complication rates. In a subgroup analysis, complications and outcomes of free flaps requiring the creation of suitable recipient vessels using an arteriovenous loop (AVL) were compared with those of free flaps that did not require additional vascular surgical procedures.
Results
A total of 107 patients (n = 66, 62% after cardiac surgery; n = 41, 38% after oncological surgery) underwent thoracic wall reconstruction with free myocutaneous tensor fasciae latae (TFL) flaps (n = 47; 44%), vastus lateralis (VL) flaps (n = 37; 35%), combined VL-anterior lateral thigh flaps (cVL-ALT) (n = 17; 16%) or cVL-TFL flaps (n = 2; 2%), anterior lateral thigh flaps (ALT, n = 2, 2%), and transverse rectus abdominis flaps (TRAM, n = 2, 2%). Of these reconstructions, 39 (36%) required simultaneous AVL creation. Postoperatively, six cases (6%) of pedicle thrombosis occurred. Complete flap necrosis occurred in three cases (3%) (VL flap, n = 2; cVL-ALT flap, n = 1), while partial flap necroses were observed in eight cases (8%) (TFL, n = 3; kVL-ALT, n = 2; VL, n = 2; TRAM, n = 1). Postoperative surgical complications showed no significant difference between reconstructions with or without the need for simultaneous AVL creation with respect to venous thrombosis (n = 0 vs. n = 3), arterial thrombosis (n = 2 vs. n = 1), partial flap necrosis (n = 3 vs. n = 5), and total flap necrosis (n = 0 vs. n = 3).
Conclusion
This study demonstrates that reconstruction of extensive thoracic wall defects with free VL or TFL flaps is feasible with low complication rates, even when simultaneous AVL creation is required.
Schlüsselwörter
Thoraxwandrekonstruktion - freie Lappenplastik - arterio-venöse Gefäßschleife - Vastus-lateralis-Lappenplastik - Tensor-fasciae-latae-LappenplastikKeywords
chest wall reconstruction - free flap - arterio-venous loop - vastus lateralis free flap - tensor fasciae latae free flapPublication History
Received: 19 April 2025
Accepted after revision: 03 June 2025
Article published online:
21 July 2025
© 2025. Thieme. All rights reserved.
Georg Thieme Verlag KG
Oswald-Hesse-Straße 50, 70469 Stuttgart, Germany
-
Literatur
- 1 Shah AA, D’Amico TA. Primary chest wall tumors. J Am Coll Surg 2010; 210: 360-366
- 2 David E, Marshall MB. Review of Chest Wall Tumors: A Diagnostic, Therapeutic, and Reconstructive Challenge. Semin Plast Surg 2011; 25: 16-24
- 3 Bitkover CY, Gårdlund B. Mediastinitis After Cardiovascular Operations: A Case-Control Study of Risk Factors. Ann Thorac Surg 1998; 65: 36-40
- 4 Braxton JH, Marrin CAS, Mcgrath PD. et al. Mediastinitis and long-term survival after coronary artery bypass graft surgery. Ann Thorac Surg 2000; 70: 2004-2007
- 5 Diez C, Koch D, Kuss O. et al. Risk factors for mediastinitis after cardiac surgery – a retrospective analysis of 1700 patients. J Cardiothorac Surg 2007; 2: 23
- 6 Beckmann A, Funkat AK, Lewandowski J. et al. Cardiac surgery in Germany during 2014: A report on behalf of the German Society for Thoracic and Cardiovascular Surgery. Thorac Cardiovasc Surg 2015; 63: 258-269
- 7 Beckmann A, Meyer R, Lewandowski J. et al. German Heart Surgery Report 2018: The Annual Updated Registry of the German Society for Thoracic and Cardiovascular Surgery. Thorac Cardiovasc Surg 2018; 66: 608-621
- 8 Hauser J, Steinau HU, Ring A. et al. Sternumosteomyelitis: Ätiologie, Diagnostik und operative Therapiekonzepte. Chirurg 2014; 85: 357-367
- 9 Cabbabe EB, Cabbabe SW. Immediate versus delayed one-stage sternal débridement and pectoralis muscle flap reconstruction of deep sternal wound infections. Plast Reconstr Surg 2009; 123: 1490-1494
- 10 Lo S, Hutson K, Hallam MJ. et al. The importance of early flap coverage in deep sternal wounds. Ann Plast Surg 2014; 73: 588-590
- 11 Salo J, Tukiainen E. Flap reconstruction of the chest wall after oncologic resection. CCTS 2020;
- 12 Daigeler A, Falkenstein A, Pennekamp W. et al. Sternal osteomyelitis: Long-term results after pectoralis muscle flap reconstruction. Plast Reconstr Surg 2009; 123: 910-917
- 13 Strecker T, Feyrer R, Horch RE. et al. Simultaneous heart valve replacement and reconstruction of the radiation-damaged chest wall with a delayed vertical rectus abdominis myocutaneous flap. J Thorac Cardiovasc Surg 2006; 132: 980-982
- 14 Spindler N, Kade S, Spiegl U. et al. Deep sternal wound infection – latissimus dorsi flap is a reliable option for reconstruction of the thoracic wall. BMC Surg 2019; 19: 173
- 15 Taeger CD, Horch RE, Arkudas A. et al. Combined free flaps with arteriovenous loops for reconstruction of extensive thoracic defects after sternal osteomyelitis. Microsurgery 2016; 36: 121-127
- 16 Li YH, Zheng Z, Yang J. et al. Management of the extensive thoracic defects after deep sternal wound infection with the rectus abdominis myocutaneous flap: A retrospective case series. Medicine (Baltimore) 2017; 96: e6391
- 17 Cordeiro PG, Santamaria E, Hidalgo D. The role of microsurgery in reconstruction of oncologic chest wall defects. Plast Reconstr Surg 2001; 108: 1924-1930
- 18 Reichenberger MA, Harenberg PS, Pelzer M. et al. Arteriovenous loops in microsurgical free tissue transfer in reconstruction of central sternal defects. J Thorac Cardiovasc Surg 2010; 140: 1283-1287
- 19 Falkner F, Thomas B, Haug V. et al. Comparison of pedicled versus free flaps for reconstruction of extensive deep sternal wound defects following cardiac surgery. Microsurgery 2021; 41: 309-318
- 20 Bigdeli AK, Falkner F, Thomas B. et al. The Free Myocutaneous Tensor Fasciae Latae Flap – A Workhorse Flap for Sternal Defect Reconstruction: A Single-Center Experience. J Pers Med 2022; 12: 427
- 21 Bigdeli AK, Falkner F, Schmidt VJ. et al. Free Flap Reconstruction of Sternal Defects after Cardiac Surgery: An Algorithmic Approach for Dealing with Sparse Recipient Vessels. Plast Reconstr Surg Glob Open 2024; 12: E5722
- 22 Falkner F, Thomas B, Mayer SA. et al. The free vastus lateralis-And conjoined vastus lateralis anterolateral thigh/tensor fascia lata flap for oncological chest wall reconstruction. Microsurgery 2024; 44: e31212
- 23 Banic A, Ris HB, Erni D. et al. Free latissimus dorsi flap for chest wall repair after complete resection of infected sternum. Ann Thorac Surg 1995; 60: 1028-1032
- 24 Strecker T, Rösch J, Horch RE. et al. Sternal wound infections following cardiac surgery: Risk factor analysis and interdisciplinary treatment. Heart Surg Forum 2007; 10: E366-E371
- 25 Daigeler A, Falkenstein A, Pennekamp W. et al. Sternal osteomyelitis: Long-term results after pectoralis muscle flap reconstruction. Plast Reconstr Surg 2009; 123: 910-917
- 26 Brown RE, McCall TE, Neumeister MW. Use of free-tissue transfer the treatment of median sternotomy: retrospective review. J Reconstr Microsurg 1999; 15: 171-175
- 27 Di Candia M, Wells FC, Malata CM. Anterolateral thigh free flap for complex composite central chest wall defect reconstruction with extrathoracic microvascular anastomoses. Plast Reconstr Surg 2010; 126: 1581-1588
- 28 Engel H, Pelzer M, Sauerbier M. et al. An innovative treatment concept for free flap reconstruction of complex central chest wall defects -- the cephalic-thoraco-acromial (CTA) loop. Microsurgery 2007; 27: 481-486
- 29 Dornseifer U, Kleeberger C, Ehrl D. et al. Arteriovenous Loop-Independent Free Flap Reconstruction of Sternal Defects after Cardiac Surgery. J Reconstr Microsurg 2016; 32: 506-512
- 30 Henn D, Abu-Halima M, Kahraman M. et al. A multivariable miRNA signature delineates the systemic hemodynamic impact of arteriovenous shunt placement in a pilot study. Sci Rep 2020; 10: 21809
- 31 Henn D, Abu-Halima M, Falkner F. et al. Micro-RNA-Regulated Proangiogenic Signaling in Arteriovenous Loops in Patients with Combined Vascular and Soft-Tissue Reconstructions: Revisiting the Nutrient Flap Concept. Plast Reconstr Surg 2018; 142: 489e-502e
- 32 Mahabir R, Butler C. Stabilization of the Chest Wall: Autologous and Alloplastic Reconstructions. Semin Plast Surg 2011; 25: 34-42