Subscribe to RSS
DOI: 10.1055/a-2637-2549
Aging and Aging-Related Senescence in Liver
Funding This research was supported by the National Institutes of Health (R01DK111866, R56DK088837, DK099205, AA028550, DK101737, AA011999, DK120515, AA029019, DK091183, P42ES010337, R44DK115242 (T.K. and D.B.), R01CA285997 (D.B.), and by Sanford Stem Cell Fitness and Space Medicine Center at Sanford Stem Cell Institute (UCSD, T.K.).

Abstract
Aging is characterized by the progressive deterioration of cell and tissue functions. The liver, which regulates metabolic homeostasis, detoxification, and immune responses, undergoes structural and functional changes with age. These include increasing genomic instability, telomere attrition, epigenetic alterations, loss of proteostasis, deregulated nutrient-sensing and intracellular communication, mitochondrial dysfunction, cell senescence, stem cell exhaustion, chronic inflammation, disabled macroautophagy, and dysbiosis. These alterations contribute to hepatocyte dysfunction, impaired regenerative responses, and fibrosis risk, which all exacerbate existing liver diseases. Senescence involves irreversible cell cycle arrest resulting in an inflammatory, senescence-associated secretory cell phenotype. Senescent hepatocytes, liver sinusoidal endothelial cells, hepatic stellate cells, and Kupffer cells accumulate in the aged liver, creating an inflammatory and fibrotic microenvironment that promotes tumorigenesis. As the burden of aging-related liver disease increases, therapeutic strategies targeting hepatic senescence have gained attention. We review these, along with the mechanisms and pathogenic effects of liver aging.
Publication History
Article published online:
04 July 2025
© 2025. Thieme. All rights reserved.
Thieme Medical Publishers, Inc.
333 Seventh Avenue, 18th Floor, New York, NY 10001, USA
-
References
- 1 Guo J, Huang X, Dou L. et al. Aging and aging-related diseases: from molecular mechanisms to interventions and treatments. Signal Transduct Target Ther 2022; 7 (01) 391
- 2 Tenchov R, Sasso JM, Wang X, Zhou QA. Aging hallmarks and progression and age-related diseases: a landscape view of research advancement. ACS Chem Neurosci 2024; 15 (01) 1-30
- 3 Franceschi C, Garagnani P, Morsiani C. et al. The continuum of aging and age-related diseases: common mechanisms but different rates. Front Med (Lausanne) 2018; 5: 61
- 4 Kim IH, Xu J, Liu X. et al. Aging increases the susceptibility of hepatic inflammation, liver fibrosis and aging in response to high-fat diet in mice. Age (Dordr) 2016; 38 (04) 291-302
- 5 Kim IH, Kisseleva T, Brenner DA. Aging and liver disease. Curr Opin Gastroenterol 2015; 31 (03) 184-191
- 6 Schmucker DL. Age-related changes in liver structure and function: Implications for disease?. Exp Gerontol 2005; 40 (8-9): 650-659
- 7 Wakabayashi H, Nishiyama Y, Ushiyama T, Maeba T, Maeta H. Evaluation of the effect of age on functioning hepatocyte mass and liver blood flow using liver scintigraphy in preoperative estimations for surgical patients: comparison with CT volumetry. J Surg Res 2002; 106 (02) 246-253
- 8 Tam V, Patel N, Turcotte M, Bossé Y, Paré G, Meyre D. Benefits and limitations of genome-wide association studies. Nat Rev Genet 2019; 20 (08) 467-484
- 9 Brooks-Wilson AR. Genetics of healthy aging and longevity. Hum Genet 2013; 132 (12) 1323-1338
- 10 Melzer D, Pilling LC, Ferrucci L. The genetics of human ageing. Nat Rev Genet 2020; 21 (02) 88-101
- 11 Nebel A, Flachsbart F, Till A. et al. A functional EXO1 promoter variant is associated with prolonged life expectancy in centenarians. Mech Ageing Dev 2009; 130 (10) 691-699
- 12 Schaetzlein S, Kodandaramireddy NR, Ju Z. et al. Exonuclease-1 deletion impairs DNA damage signaling and prolongs lifespan of telomere-dysfunctional mice. Cell 2007; 130 (05) 863-877
- 13 Chen Y, Geng A, Zhang W. et al. Fight to the bitter end: DNA repair and aging. Ageing Res Rev 2020; 64: 101154
- 14 Li Q. TIMely connections: APOE4, aging, and Alzheimer's. Immunity 2024; 57 (01) 8-10
- 15 Paul A, Belton A, Nag S, Martin I, Grotewiel MS, Duttaroy A. Reduced mitochondrial SOD displays mortality characteristics reminiscent of natural aging. Mech Ageing Dev 2007; 128 (11–12): 706-716
- 16 Weyemi U, Parekh PR, Redon CE, Bonner WM. SOD2 deficiency promotes aging phenotypes in mouse skin. Aging (Albany NY) 2012; 4 (02) 116-118
- 17 Congrains A, Kamide K, Ohishi M, Rakugi H. ANRIL: molecular mechanisms and implications in human health. Int J Mol Sci 2013; 14 (01) 1278-1292
- 18 Nikpay M, Goel A, Won HH. et al. A comprehensive 1,000 Genomes-based genome-wide association meta-analysis of coronary artery disease. Nat Genet 2015; 47 (10) 1121-1130
- 19 Gordon LB, Rothman FG, López-Otín C, Misteli T. Progeria: a paradigm for translational medicine. Cell 2014; 156 (03) 400-407
- 20 Carrero D, Soria-Valles C, López-Otín C. Hallmarks of progeroid syndromes: lessons from mice and reprogrammed cells. Dis Model Mech 2016; 9 (07) 719-735
- 21 Ng SWK, Rouhani FJ, Brunner SF. et al. Convergent somatic mutations in metabolism genes in chronic liver disease. Nature 2021; 598 (7881) 473-478
- 22 Zhu M, Lu T, Jia Y. et al. Somatic mutations increase hepatic clonal fitness and regeneration in chronic liver disease. Cell 2019; 177 (03) 608-621.e12
- 23 Wang Z, Zhu S, Jia Y. et al. Positive selection of somatically mutated clones identifies adaptive pathways in metabolic liver disease. Cell 2023; 186 (09) 1968-1984.e20
- 24 Chatsirisupachai K, de Magalhães JP. Somatic mutations in human ageing: new insights from DNA sequencing and inherited mutations. Ageing Res Rev 2024; 96: 102268
- 25 Alexandrov LB, Jones PH, Wedge DC. et al. Clock-like mutational processes in human somatic cells. Nat Genet 2015; 47 (12) 1402-1407
- 26 Chakravarti D, LaBella KA, DePinho RA. Telomeres: history, health, and hallmarks of aging. Cell 2021; 184 (02) 306-322
- 27 López-Otín C, Blasco MA, Partridge L, Serrano M, Kroemer G. The hallmarks of aging. Cell 2013; 153 (06) 1194-1217
- 28 Collection CC. https://www.cas.org/about/cas-content . Accessed January 18, 2023
- 29 Jack H. Anti-Aging: State of the Art. https://www.lesswrong.com/posts/RcifQCKkRc9XTjxC2/anti-aging-state-of-the-art . Accessed February 3, 2023.
- 30 Hoeijmakers JH. DNA damage, aging, and cancer. N Engl J Med 2009; 361 (15) 1475-1485
- 31 Huang R, Zhou PK. DNA damage repair: historical perspectives, mechanistic pathways and clinical translation for targeted cancer therapy. Signal Transduct Target Ther 2021; 6 (01) 254
- 32 Chatterjee N, Walker GC. Mechanisms of DNA damage, repair, and mutagenesis. Environ Mol Mutagen 2017; 58 (05) 235-263
- 33 López-Otín C, Kroemer G. Hallmarks of health. Cell 2021; 184 (01) 33-63
- 34 López-Gil L, Pascual-Ahuir A, Proft M. Genomic instability and epigenetic changes during aging. Int J Mol Sci 2023; 24 (18) 14279
- 35 North BJ, Rosenberg MA, Jeganathan KB. et al. SIRT2 induces the checkpoint kinase BubR1 to increase lifespan. EMBO J 2014; 33 (13) 1438-1453
- 36 Baker DJ, Dawlaty MM, Wijshake T. et al. Increased expression of BubR1 protects against aneuploidy and cancer and extends healthy lifespan. Nat Cell Biol 2013; 15 (01) 96-102
- 37 Habbane M, Montoya J, Rhouda T, Sbaoui Y, Radallah D, Emperador S. Human mitochondrial DNA: particularities and diseases. Biomedicines 2021; 9 (10) 1364
- 38 Sanchez-Contreras M, Kennedy SR. The complicated nature of somatic mtDNA mutations in aging. Front Aging 2022; 2: 2
- 39 Lujan SA, Longley MJ, Humble MH. et al. Ultrasensitive deletion detection links mitochondrial DNA replication, disease, and aging. Genome Biol 2020; 21 (01) 248
- 40 Greaves LC, Nooteboom M, Elson JL. et al. Clonal expansion of early to mid-life mitochondrial DNA point mutations drives mitochondrial dysfunction during human ageing. PLoS Genet 2014; 10 (09) e1004620
- 41 Macken WL, Vandrovcova J, Hanna MG, Pitceathly RDS. Applying genomic and transcriptomic advances to mitochondrial medicine. Nat Rev Neurol 2021; 17 (04) 215-230
- 42 Yi SJ, Kim K. New insights into the role of histone changes in aging. Int J Mol Sci 2020; 21 (21) 8241
- 43 National Cancer Institute Dictionary of Cancer Terms. https://www.cancer.gov/publications/dictionaries/cancer-terms/def/epigenetic-alteration . Accessed February 8, 2025.
- 44 Lee JH, Kim EW, Croteau DL, Bohr VA. Heterochromatin: an epigenetic point of view in aging. Exp Mol Med 2020; 52 (09) 1466-1474
- 45 McCauley BS, Dang W. Histone methylation and aging: lessons learned from model systems. Biochim Biophys Acta 2014; 1839 (12) 1454-1462
- 46 Rando TA, Chang HY. Aging, rejuvenation, and epigenetic reprogramming: resetting the aging clock. Cell 2012; 148 (1–2): 46-57
- 47 Moore LD, Le T, Fan G. DNA methylation and its basic function. Neuropsychopharmacology 2013; 38 (01) 23-38
- 48 Bird A, Taggart M, Frommer M, Miller OJ, Macleod D. A fraction of the mouse genome that is derived from islands of nonmethylated, CpG-rich DNA. Cell 1985; 40 (01) 91-99
- 49 Saxonov S, Berg P, Brutlag DL. A genome-wide analysis of CpG dinucleotides in the human genome distinguishes two distinct classes of promoters. Proc Natl Acad Sci U S A 2006; 103 (05) 1412-1417
- 50 Mohn F, Weber M, Rebhan M. et al. Lineage-specific polycomb targets and de novo DNA methylation define restriction and potential of neuronal progenitors. Mol Cell 2008; 30 (06) 755-766
- 51 Mayer W, Niveleau A, Walter J, Fundele R, Haaf T. Demethylation of the zygotic paternal genome. Nature 2000; 403 (6769) 501-502
- 52 Horvath S. DNA methylation age of human tissues and cell types. Genome Biol 2013; 14 (10) R115
- 53 Zampieri M, Ciccarone F, Calabrese R, Franceschi C, Bürkle A, Caiafa P. Reconfiguration of DNA methylation in aging. Mech Ageing Dev 2015; 151: 60-70
- 54 Johansson A, Enroth S, Gyllensten U. Continuous aging of the human DNA methylome throughout the human lifespan. PLoS One 2013; 8 (06) e67378
- 55 Raj K, Horvath S. Current perspectives on the cellular and molecular features of epigenetic ageing. Exp Biol Med (Maywood) 2020; 245 (17) 1532-1542
- 56 Bartke T, Vermeulen M, Xhemalce B, Robson SC, Mann M, Kouzarides T. Nucleosome-interacting proteins regulated by DNA and histone methylation. Cell 2010; 143 (03) 470-484
- 57 Kane AE, Sinclair DA. Epigenetic changes during aging and their reprogramming potential. Crit Rev Biochem Mol Biol 2019; 54 (01) 61-83
- 58 Cheung P, Vallania F, Warsinske HC. et al. Single-Cell Chromatin Modification Profiling Reveals Increased Epigenetic Variations with Aging. Cell 2018; 173 (06) 1385-1397.e14
- 59 Greer EL, Shi Y. Histone methylation: a dynamic mark in health, disease and inheritance. Nat Rev Genet 2012; 13 (05) 343-357
- 60 Bonasio R, Tu S, Reinberg D. Molecular signals of epigenetic states. Science 2010; 330 (6004) 612-616
- 61 Collins BE, Greer CB, Coleman BC, Sweatt JD. Histone H3 lysine K4 methylation and its role in learning and memory. Epigenetics Chromatin 2019; 12 (01) 7
- 62 Cai Y, Zhang Y, Loh YP. et al. H3K27me3-rich genomic regions can function as silencers to repress gene expression via chromatin interactions. Nat Commun 2021; 12 (01) 719
- 63 Blasco MA. Telomere length, stem cells and aging. Nat Chem Biol 2007; 3 (10) 640-649
- 64 Yamagishi M, Kuze Y, Kobayashi S. et al. Mechanisms of action and resistance in histone methylation-targeted therapy. Nature 2024; 627 (8002) 221-228
- 65 Verdone L, Agricola E, Caserta M, Di Mauro E. Histone acetylation in gene regulation. Brief Funct Genomics Proteomics 2006; 5 (03) 209-221
- 66 Bannister AJ, Kouzarides T. Regulation of chromatin by histone modifications. Cell Res 2011; 21 (03) 381-395
- 67 Wang WW, Zeng Y, Wu B, Deiters A, Liu WR. A chemical biology approach to reveal Sirt6-targeted histone H3 sites in nucleosomes. ACS Chem Biol 2016; 11 (07) 1973-1981
- 68 Dang W, Steffen KK, Perry R. et al. Histone H4 lysine 16 acetylation regulates cellular lifespan. Nature 2009; 459 (7248) 802-807
- 69 Nativio R, Donahue G, Berson A. et al. Dysregulation of the epigenetic landscape of normal aging in Alzheimer's disease. Nat Neurosci 2018; 21 (04) 497-505
- 70 Yuan J, Pu M, Zhang Z, Lou Z. Histone H3-K56 acetylation is important for genomic stability in mammals. Cell Cycle 2009; 8 (11) 1747-1753
- 71 Feser J, Truong D, Das C. et al. Elevated histone expression promotes life span extension. Mol Cell 2010; 39 (05) 724-735
- 72 Li Y, Jin J, Wang Y. SIRT6 widely regulates aging, immunity, and cancer. Front Oncol 2022; 12: 861334
- 73 Moazed D. Enzymatic activities of Sir2 and chromatin silencing. Curr Opin Cell Biol 2001; 13 (02) 232-238
- 74 Guarente L. Sirtuins, aging, and metabolism. Cold Spring Harb Symp Quant Biol 2011; 76: 81-90
- 75 Mostoslavsky R, Chua KF, Lombard DB. et al. Genomic instability and aging-like phenotype in the absence of mammalian SIRT6. Cell 2006; 124 (02) 315-329
- 76 Badea L, Herlea V, Dima SO, Dumitrascu T, Popescu I. Combined gene expression analysis of whole-tissue and microdissected pancreatic ductal adenocarcinoma identifies genes specifically overexpressed in tumor epithelia. Hepatogastroenterology 2008; 55 (88) 2016-2027
- 77 Anders M, Fehlker M, Wang Q. et al. Microarray meta-analysis defines global angiogenesis-related gene expression signatures in human carcinomas. Mol Carcinog 2013; 52 (01) 29-38
- 78 Guarente L, Franklin H. Epstein lecture: sirtuins, aging, and medicine. N Engl J Med 2011; 364 (23) 2235-2244
- 79 Blackburn EH, Greider CW, Szostak JW. Telomeres and telomerase: the path from maize, Tetrahymena and yeast to human cancer and aging. Nat Med 2006; 12 (10) 1133-1138
- 80 López-Otín C, Blasco MA, Partridge L, Serrano M, Kroemer G. Hallmarks of aging: an expanding universe. Cell 2023; 186 (02) 243-278
- 81 de Lange T. How shelterin solves the telomere end-protection problem. Cold Spring Harb Symp Quant Biol 2010; 75: 167-177
- 82 Zhu Y, Liu X, Ding X, Wang F, Geng X. Telomere and its role in the aging pathways: telomere shortening, cell senescence and mitochondria dysfunction. Biogerontology 2019; 20 (01) 1-16
- 83 Demanelis K, Jasmine F, Chen LS. et al; GTEx Consortium. Determinants of telomere length across human tissues. Science 2020; 369 (6509) eaaz6876
- 84 Du HY, Idol R, Robledo S. et al. Telomerase reverse transcriptase haploinsufficiency and telomere length in individuals with 5p- syndrome. Aging Cell 2007; 6 (05) 689-697
- 85 Rossiello F, Jurk D, Passos JF, d'Adda di Fagagna F. Telomere dysfunction in ageing and age-related diseases. Nat Cell Biol 2022; 24 (02) 135-147
- 86 Henriques CM, Carneiro MC, Tenente IM, Jacinto A, Ferreira MG. Telomerase is required for zebrafish lifespan. PLoS Genet 2013; 9 (01) e1003214
- 87 Hoare M, Das T, Alexander G. Ageing, telomeres, senescence, and liver injury. J Hepatol 2010; 53 (05) 950-961
- 88 Sanfeliu-Redondo D, Gibert-Ramos A, Gracia-Sancho J. Cell senescence in liver diseases: pathological mechanism and theranostic opportunity. Nat Rev Gastroenterol Hepatol 2024; 21 (07) 477-492
- 89 Chen J, Sun T, You Y, Wu B, Wang X, Wu J. Proteoglycans and glycosaminoglycans in stem cell homeostasis and bone tissue regeneration. Front Cell Dev Biol 2021; 9: 760532
- 90 Morrison SJ, Spradling AC. Stem cells and niches: mechanisms that promote stem cell maintenance throughout life. Cell 2008; 132 (04) 598-611
- 91 Levi BP, Morrison SJ. Stem cells use distinct self-renewal programs at different ages. Cold Spring Harb Symp Quant Biol 2008; 73: 539-553
- 92 Liu B, Qu J, Zhang W, Izpisua Belmonte JC, Liu GH. A stem cell aging framework, from mechanisms to interventions. Cell Rep 2022; 41 (03) 111451
- 93 Evarts RP, Nagy P, Nakatsukasa H, Marsden E, Thorgeirsson SS. In vivo differentiation of rat liver oval cells into hepatocytes. Cancer Res 1989; 49 (06) 1541-1547
- 94 Duncan AW, Dorrell C, Grompe M. Stem cells and liver regeneration. Gastroenterology 2009; 137 (02) 466-481
- 95 Chen H, Liu O, Chen S, Zhou Y. Aging and mesenchymal stem cells: therapeutic opportunities and challenges in the older group. Gerontology 2022; 68 (03) 339-352
- 96 Jiang C, Chen H, Kang Y. et al. Administration of AG490 decreases the senescence of umbilical cord-mesenchymal stem cells and promotes the cytotherapeutic effect in liver fibrosis. Cell Death Discov 2023; 9 (01) 273
- 97 Tyedmers J, Mogk A, Bukau B. Cellular strategies for controlling protein aggregation. Nat Rev Mol Cell Biol 2010; 11 (11) 777-788
- 98 Wong MY, DiChiara AS, Suen PH, Chen K, Doan ND, Shoulders MD. Adapting secretory proteostasis and function through the unfolded protein response. Curr Top Microbiol Immunol 2018; 414: 1-25
- 99 Carvalho-Gontijo R, Han C, Zhang L. et al. Metabolic injury of hepatocytes promotes progression of NAFLD and AALD. Semin Liver Dis 2022; 42 (03) 233-249
- 100 Hetz C, Zhang K, Kaufman RJ. Mechanisms, regulation and functions of the unfolded protein response. Nat Rev Mol Cell Biol 2020; 21 (08) 421-438
- 101 Vilchez D, Saez I, Dillin A. The role of protein clearance mechanisms in organismal ageing and age-related diseases. Nat Commun 2014; 5: 5659
- 102 Maeso-Díaz R, Ortega-Ribera M, Fernández-Iglesias A. et al. Effects of aging on liver microcirculatory function and sinusoidal phenotype. Aging Cell 2018; 17 (06) e12829
- 103 Amorim JA, Coppotelli G, Rolo AP, Palmeira CM, Ross JM, Sinclair DA. Mitochondrial and metabolic dysfunction in ageing and age-related diseases. Nat Rev Endocrinol 2022; 18 (04) 243-258
- 104 Miller HA, Dean ES, Pletcher SD, Leiser SF. Cell non-autonomous regulation of health and longevity. eLife 2020; 9: 9
- 105 Walters HE, Cox LS. Intercellular transfer of mitochondria between senescent cells through cytoskeleton-supported intercellular bridges requires mTOR and CDC42 signalling. Oxid Med Cell Longev 2021; 2021: 6697861
- 106 van Niel G, Carter DRF, Clayton A, Lambert DW, Raposo G, Vader P. Challenges and directions in studying cell-cell communication by extracellular vesicles. Nat Rev Mol Cell Biol 2022; 23 (05) 369-382
- 107 Giordano-Santini R, Linton C, Hilliard MA. Cell-cell fusion in the nervous system: alternative mechanisms of development, injury, and repair. Semin Cell Dev Biol 2016; 60: 146-154
- 108 Matsumoto T. Implications of polyploidy and ploidy alterations in hepatocytes in liver injuries and cancers. Int J Mol Sci 2022; 23 (16) 9409
- 109 Kaushik S, Cuervo AM. Proteostasis and aging. Nat Med 2015; 21 (12) 1406-1415
- 110 Galluzzi L, Baehrecke EH, Ballabio A. et al. Molecular definitions of autophagy and related processes. EMBO J 2017; 36 (13) 1811-1836
- 111 Aman Y, Schmauck-Medina T, Hansen M. et al. Autophagy in healthy aging and disease. Nat Aging 2021; 1 (08) 634-650
- 112 Fernández AF, Sebti S, Wei Y. et al. Disruption of the beclin 1-BCL2 autophagy regulatory complex promotes longevity in mice. Nature 2018; 558 (7708) 136-140
- 113 Pignatti C, D'Adamo S, Stefanelli C, Flamigni F, Cetrullo S. Nutrients and pathways that regulate health span and life span. Geriatrics (Basel) 2020; 5 (04) 95
- 114 Huberman LB, Coradetti ST, Glass NL. Network of nutrient-sensing pathways and a conserved kinase cascade integrate osmolarity and carbon sensing in Neurospora crassa . Proc Natl Acad Sci U S A 2017; 114 (41) E8665-E8674
- 115 Loewith R, Jacinto E, Wullschleger S. et al. Two TOR complexes, only one of which is rapamycin sensitive, have distinct roles in cell growth control. Mol Cell 2002; 10 (03) 457-468
- 116 Liu GY, Sabatini DM. mTOR at the nexus of nutrition, growth, ageing and disease. Nat Rev Mol Cell Biol 2020; 21 (04) 183-203
- 117 Slack C, Alic N, Foley A, Cabecinha M, Hoddinott MP, Partridge L. The Ras-Erk-ETS-signaling pathway is a drug target for longevity. Cell 2015; 162 (01) 72-83
- 118 Hunt NJ, Kang SWS, Lockwood GP, Le Couteur DG, Cogger VC. Hallmarks of aging in the liver. Comput Struct Biotechnol J 2019; 17: 1151-1161
- 119 Rafalski VA, Brunet A. Energy metabolism in adult neural stem cell fate. Prog Neurobiol 2011; 93 (02) 182-203
- 120 Franceschi C, Bonafè M, Valensin S. et al. Inflamm-aging. An evolutionary perspective on immunosenescence. Ann N Y Acad Sci 2000; 908: 244-254
- 121 Sanada F, Taniyama Y, Muratsu J. et al. Source of chronic inflammation in aging. Front Cardiovasc Med 2018; 5: 12
- 122 Seki E, De Minicis S, Osterreicher CH. et al. TLR4 enhances TGF-beta signaling and hepatic fibrosis. Nat Med 2007; 13 (11) 1324-1332
- 123 Gorini F, Scala G, Di Palo G. et al. The genomic landscape of 8-oxodG reveals enrichment at specific inherently fragile promoters. Nucleic Acids Res 2020; 48 (08) 4309-4324
- 124 Herranz N, Gil J. Mechanisms and functions of cellular senescence. J Clin Invest 2018; 128 (04) 1238-1246
- 125 Birch J, Gil J. Senescence and the SASP: many therapeutic avenues. Genes Dev 2020; 34 (23-24): 1565-1576
- 126 Bi Y, Qiao X, Cai Z. et al. Exosomal miR-302b rejuvenates aging mice by reversing the proliferative arrest of senescent cells. Cell Metab 2025; 37 (02) 527-541.e6
- 127 Gorgoulis V, Adams PD, Alimonti A. et al. Cellular senescence: defining a path forward. Cell 2019; 179 (04) 813-827
- 128 Lee S, Schmitt CA. The dynamic nature of senescence in cancer. Nat Cell Biol 2019; 21 (01) 94-101
- 129 Sharpless NE, Sherr CJ. Forging a signature of in vivo senescence. Nat Rev Cancer 2015; 15 (07) 397-408
- 130 Yosef R, Pilpel N, Tokarsky-Amiel R. et al. Directed elimination of senescent cells by inhibition of BCL-W and BCL-XL. Nat Commun 2016; 7: 11190
- 131 Barriuso D, Alvarez-Frutos L, Gonzalez-Gutierrez L. et al. Involvement of Bcl-2 family proteins in tetraploidization-related senescence. Int J Mol Sci 2023; 24 (07) 6374
- 132 Kuwana T, Bouchier-Hayes L, Chipuk JE. et al. BH3 domains of BH3-only proteins differentially regulate Bax-mediated mitochondrial membrane permeabilization both directly and indirectly. Mol Cell 2005; 17 (04) 525-535
- 133 Strasser A, Puthalakath H, Bouillet P. et al. The role of bim, a proapoptotic BH3-only member of the Bcl-2 family in cell-death control. Ann N Y Acad Sci 2000; 917: 541-548
- 134 Cheng LQ, Zhang ZQ, Chen HZ, Liu DP. Epigenetic regulation in cell senescence. J Mol Med (Berl) 2017; 95 (12) 1257-1268
- 135 Salama R, Sadaie M, Hoare M, Narita M. Cellular senescence and its effector programs. Genes Dev 2014; 28 (02) 99-114
- 136 Hernandez-Segura A, de Jong TV, Melov S, Guryev V, Campisi J, Demaria M. Unmasking transcriptional heterogeneity in senescent cells. Curr Biol 2017; 27 (17) 2652-2660.e4
- 137 Sadaie M, Salama R, Carroll T. et al. Redistribution of the Lamin B1 genomic binding profile affects rearrangement of heterochromatic domains and SAHF formation during senescence. Genes Dev 2013; 27 (16) 1800-1808
- 138 Coppé JP, Desprez PY, Krtolica A, Campisi J. The senescence-associated secretory phenotype: the dark side of tumor suppression. Annu Rev Pathol 2010; 5: 99-118
- 139 Basisty N, Kale A, Jeon OH. et al. A proteomic atlas of senescence-associated secretomes for aging biomarker development. PLoS Biol 2020; 18 (01) e3000599
- 140 Kim DE, Davalos AR. Alarmin detection in senescent cells. Methods Mol Biol 2019; 1896: 71-81
- 141 Lopes-Paciencia S, Saint-Germain E, Rowell MC, Ruiz AF, Kalegari P, Ferbeyre G. The senescence-associated secretory phenotype and its regulation. Cytokine 2019; 117: 15-22
- 142 Glück S, Guey B, Gulen MF. et al. Innate immune sensing of cytosolic chromatin fragments through cGAS promotes senescence. Nat Cell Biol 2017; 19 (09) 1061-1070
- 143 Gulen MF, Samson N, Keller A. et al. cGAS-STING drives ageing-related inflammation and neurodegeneration. Nature 2023; 620 (7973) 374-380
- 144 Takahashi A, Imai Y, Yamakoshi K. et al. DNA damage signaling triggers degradation of histone methyltransferases through APC/C(Cdh1) in senescent cells. Mol Cell 2012; 45 (01) 123-131
- 145 Rhinn M, Ritschka B, Keyes WM. Cellular senescence in development, regeneration and disease. Development 2019; 146 (20) dev151837
- 146 Hernandez-Segura A, Nehme J, Demaria M. Hallmarks of cellular senescence. Trends Cell Biol 2018; 28 (06) 436-453
- 147 Martín-Vicente P, López-Martínez C, Rioseras B, Albaiceta GM. Activation of senescence in critically ill patients: mechanisms, consequences and therapeutic opportunities. Ann Intensive Care 2024; 14 (01) 2
- 148 Xu M, Pirtskhalava T, Farr JN. et al. Senolytics improve physical function and increase lifespan in old age. Nat Med 2018; 24 (08) 1246-1256
- 149 Robbins PD, Jurk D, Khosla S. et al. Senolytic drugs: reducing senescent cell viability to extend health span. Annu Rev Pharmacol Toxicol 2021; 61: 779-803
- 150 Wissler Gerdes EO, Misra A, Netto JME, Tchkonia T, Kirkland JL. Strategies for late phase preclinical and early clinical trials of senolytics. Mech Ageing Dev 2021; 200: 111591
- 151 Schmucker DL, Mooney JS, Jones AL. Stereological analysis of hepatic fine structure in the Fischer 344 rat. Influence of sublobular location and animal age. J Cell Biol 1978; 78 (02) 319-337
- 152 Schmucker DL, Wang RK. Effects of aging and phenobarbital on the rat liver microsomal drug-metabolizing system. Mech Ageing Dev 1981; 15 (02) 189-202
- 153 Schmucker DL. Hepatocyte fine structure during maturation and senescence. J Electron Microsc Tech 1990; 14 (02) 106-125
- 154 Schmucker DL, Sachs H. Quantifying dense bodies and lipofuscin during aging: a morphologist's perspective. Arch Gerontol Geriatr 2002; 34 (03) 249-261
- 155 Jung T, Bader N, Grune T. Lipofuscin: formation, distribution, and metabolic consequences. Ann N Y Acad Sci 2007; 1119: 97-111
- 156 Jolly RD, Douglas BV, Davey PM, Roiri JE. Lipofuscin in bovine muscle and brain: a model for studying age pigment. Gerontology 1995; 41 (Suppl 02): 283-295
- 157 Rad AN, Grillari J. Current senolytics: mode of action, efficacy and limitations, and their future. Mech Ageing Dev 2024; 217: 111888
- 158 Flor AC, Doshi AP, Kron SJ. Modulation of therapy-induced senescence by reactive lipid aldehydes. Cell Death Discov 2016; 2: 16045
- 159 Liu P, Tang Q, Chen M. et al. Hepatocellular senescence: immunosurveillance and future senescence-induced therapy in hepatocellular carcinoma. Front Oncol 2020; 10: 589908
- 160 Cieslak KP, Baur O, Verheij J, Bennink RJ, van Gulik TM. Liver function declines with increased age. HPB (Oxford) 2016; 18 (08) 691-696
- 161 Jin J, Iakova P, Jiang Y, Medrano EE, Timchenko NA. The reduction of SIRT1 in livers of old mice leads to impaired body homeostasis and to inhibition of liver proliferation. Hepatology 2011; 54 (03) 989-998
- 162 Imai Y, Takahashi A, Hanyu A. et al. Crosstalk between the Rb pathway and AKT signaling forms a quiescence-senescence switch. Cell Rep 2014; 7 (01) 194-207
- 163 Wang W, Zheng Y, Sun S. et al. A genome-wide CRISPR-based screen identifies KAT7 as a driver of cellular senescence. Sci Transl Med 2021; 13 (575) eabd2655
- 164 Ito Y, Sørensen KK, Bethea NW. et al. Age-related changes in the hepatic microcirculation in mice. Exp Gerontol 2007; 42 (08) 789-797
- 165 Vats R, Li Z, Ju EM. et al. Intravital imaging reveals inflammation as a dominant pathophysiology of age-related hepatovascular changes. Am J Physiol Cell Physiol 2022; 322 (03) C508-C520
- 166 Maeso-Díaz R, Ortega-Ribera M, Lafoz E. et al. Aging influences hepatic microvascular biology and liver fibrosis in advanced chronic liver disease. Aging Dis 2019; 10 (04) 684-698
- 167 Yee LJ, Tang J, Gibson AW, Kimberly R, Van Leeuwen DJ, Kaslow RA. Interleukin 10 polymorphisms as predictors of sustained response in antiviral therapy for chronic hepatitis C infection. Hepatology 2001; 33 (03) 708-712
- 168 McLean AJ, Cogger VC, Chong GC. et al. Age-related pseudocapillarization of the human liver. J Pathol 2003; 200 (01) 112-117
- 169 Mohamad M, Mitchell SJ, Wu LE. et al. Ultrastructure of the liver microcirculation influences hepatic and systemic insulin activity and provides a mechanism for age-related insulin resistance. Aging Cell 2016; 15 (04) 706-715
- 170 Warren A, Bertolino P, Cogger VC, McLean AJ, Fraser R, Le Couteur DG. Hepatic pseudocapillarization in aged mice. Exp Gerontol 2005; 40 (10) 807-812
- 171 Duan JL, Liu JJ, Ruan B. et al. Age-related liver endothelial zonation triggers steatohepatitis by inactivating pericentral endothelium-derived C-kit. Nat Aging 2023; 3 (03) 258-274
- 172 Hide D, Warren A, Fernández-Iglesias A. et al. Ischemia/reperfusion injury in the aged liver: the importance of the sinusoidal endothelium in developing therapeutic strategies for the elderly. J Gerontol A Biol Sci Med Sci 2020; 75 (02) 268-277
- 173 Simon-Santamaria J, Malovic I, Warren A. et al. Age-related changes in scavenger receptor-mediated endocytosis in rat liver sinusoidal endothelial cells. J Gerontol A Biol Sci Med Sci 2010; 65 (09) 951-960
- 174 Baiocchi L, Glaser S, Francis H. et al. Impact of aging on liver cells and liver disease: focus on the biliary and vascular compartments. Hepatol Commun 2021; 5 (07) 1125-1137
- 175 Sun X, Harris EN. New aspects of hepatic endothelial cells in physiology and nonalcoholic fatty liver disease. Am J Physiol Cell Physiol 2020; 318 (06) C1200-C1213
- 176 Rosenthal SB, Liu X, Ganguly S. et al. Heterogeneity of HSCs in a mouse model of NASH. Hepatology 2021; 74 (02) 667-685
- 177 Kisseleva T, Brenner D. Molecular and cellular mechanisms of liver fibrosis and its regression. Nat Rev Gastroenterol Hepatol 2021; 18 (03) 151-166
- 178 Dhar D, Baglieri J, Kisseleva T, Brenner DA. Mechanisms of liver fibrosis and its role in liver cancer. Exp Biol Med (Maywood) 2020; 245 (02) 96-108
- 179 Tsuchida T, Friedman SL. Mechanisms of hepatic stellate cell activation. Nat Rev Gastroenterol Hepatol 2017; 14 (07) 397-411
- 180 Filliol A, Saito Y, Nair A. et al. Opposing roles of hepatic stellate cell subpopulations in hepatocarcinogenesis. Nature 2022; 610 (7931) 356-365
- 181 Yashaswini CN, Qin T, Bhattacharya D. et al. Phenotypes and ontogeny of senescent hepatic stellate cells in metabolic dysfunction-associated steatohepatitis. J Hepatol 2024; 81 (02) 207-217
- 182 Rosenthal SB. et al. Heterogeneity of hepatic stellate cells in a mouse model of non-alcoholic steatohepatitis (NASH). Hepatology 2021
- 183 Ganguly S, Muench GA, Shang L. et al. Nonalcoholic steatohepatitis and HCC in a hyperphagic mouse accelerated by western diet. Cell Mol Gastroenterol Hepatol 2021; 12 (03) 891-920
- 184 Zhang W, Conway SJ, Liu Y. et al. Heterogeneity of hepatic stellate cells in fibrogenesis of the liver: insights from single-cell transcriptomic analysis in liver injury. Cells 2021; 10 (08) 2129
- 185 Yang W, He H, Wang T. et al. Single-cell transcriptomic analysis reveals a hepatic stellate cell-activation roadmap and myofibroblast origin during liver fibrosis in mice. Hepatology 2021; 74 (05) 2774-2790
- 186 Kim HY. et al. Multi-modal analysis of human hepatic stellate cells identifies novel therapeutic targets for metabolic dysfunction-associated steatotic liver disease. J Hepatol 2024
- 187 Yoshimoto S, Loo TM, Atarashi K. et al. Obesity-induced gut microbial metabolite promotes liver cancer through senescence secretome. Nature 2013; 499 (7456) 97-101
- 188 Li F, Huangyang P, Burrows M. et al. FBP1 loss disrupts liver metabolism and promotes tumorigenesis through a hepatic stellate cell senescence secretome. Nat Cell Biol 2020; 22 (06) 728-739
- 189 Miyazoe Y, Miuma S, Miyaaki H. et al. Extracellular vesicles from senescent hepatic stellate cells promote cell viability of hepatoma cells through increasing EGF secretion from differentiated THP-1 cells. Biomed Rep 2020; 12 (04) 163-170
- 190 Yamagishi R, Kamachi F, Nakamura M. et al. Gasdermin D-mediated release of IL-33 from senescent hepatic stellate cells promotes obesity-associated hepatocellular carcinoma. Sci Immunol 2022; 7 (72) eabl7209
- 191 Osna NA, Tikhanovich I, Ortega-Ribera M. et al. Alcohol-associated liver disease outcomes: critical mechanisms of liver injury progression. Biomolecules 2024; 14 (04) 404
- 192 Amor C, Feucht J, Leibold J. et al. Senolytic CAR T cells reverse senescence-associated pathologies. Nature 2020; 583 (7814) 127-132
- 193 Kurosawa S, Iwama A. Aging and leukemic evolution of hematopoietic stem cells under various stress conditions. Inflamm Regen 2020; 40 (01) 29
- 194 Hilmer SN, Cogger VC, Le Couteur DG. Basal activity of Kupffer cells increases with old age. J Gerontol A Biol Sci Med Sci 2007; 62 (09) 973-978
- 195 Yang X, Liang L, Zong C. et al. Kupffer cells-dependent inflammation in the injured liver increases recruitment of mesenchymal stem cells in aging mice. Oncotarget 2016; 7 (02) 1084-1095
- 196 Ogrodnik M, Miwa S, Tchkonia T. et al. Cellular senescence drives age-dependent hepatic steatosis. Nat Commun 2017; 8: 15691
- 197 Krizhanovsky V, Yon M, Dickins RA. et al. Senescence of activated stellate cells limits liver fibrosis. Cell 2008; 134 (04) 657-667
- 198 Wang C, Maddick M, Miwa S. et al. Adult-onset, short-term dietary restriction reduces cell senescence in mice. Aging (Albany NY) 2010; 2 (09) 555-566
- 199 Song P, Duan JL, Ding J. et al. Cellular senescence primes liver fibrosis regression through Notch-EZH2. MedComm 2023; 4 (05) e346
- 200 Sanborn MA, Wang X, Gao S, Dai Y, Rehman J. Unveiling the cell-type-specific landscape of cellular senescence through single-cell transcriptomics using SenePy. Nat Commun 2025; 16 (01) 1884
- 201 Victorelli S, Salmonowicz H, Chapman J. et al. Apoptotic stress causes mtDNA release during senescence and drives the SASP. Nature 2023; 622 (7983) 627-636
- 202 Gurkar AU, Gerencser AA, Mora AL. et al. Spatial mapping of cellular senescence: emerging challenges and opportunities. Nat Aging 2023; 3 (07) 776-790
- 203 Huang W, Hickson LJ, Eirin A, Kirkland JL, Lerman LO. Cellular senescence: the good, the bad and the unknown. Nat Rev Nephrol 2022; 18 (10) 611-627
- 204 Zhu Y, Tchkonia T, Pirtskhalava T. et al. The Achilles' heel of senescent cells: from transcriptome to senolytic drugs. Aging Cell 2015; 14 (04) 644-658
- 205 Chaib S, Tchkonia T, Kirkland JL. Cellular senescence and senolytics: the path to the clinic. Nat Med 2022; 28 (08) 1556-1568
- 206 Yousefzadeh MJ, Zhu Y, McGowan SJ. et al. Fisetin is a senotherapeutic that extends health and lifespan. EBioMedicine 2018; 36: 18-28
- 207 Kim TW. Fisetin, an anti-inflammatory agent, overcomes radioresistance by activating the PERK-ATF4-CHOP axis in liver cancer. Int J Mol Sci 2023; 24 (10) 9076
- 208 Sun Q, Zhang W, Zhong W, Sun X, Zhou Z. Dietary fisetin supplementation protects against alcohol-induced liver injury in mice. Alcohol Clin Exp Res 2016; 40 (10) 2076-2084
- 209 Li T, Ling J, Du X, Zhang S, Yang Y, Zhang L. Exploring the underlying mechanisms of fisetin in the treatment of hepatic insulin resistance via network pharmacology and in vitro validation. Nutr Metab (Lond) 2023; 20 (01) 51
- 210 Umar M, Muzammil S, Zahoor MA. et al. Fisetin attenuates arsenic-induced hepatic damage by improving biochemical, inflammatory, apoptotic, and histological profile: in vivo and in silico approach. Evid Based Complement Alternat Med 2022; 2022: 1005255
- 211 Liou CJ, Wei CH, Chen YL, Cheng CY, Wang CL, Huang WC. Fisetin protects against hepatic steatosis through regulation of the Sirt1/AMPK and fatty acid β-oxidation signaling pathway in high-fat diet-induced obese mice. Cell Physiol Biochem 2018; 49 (05) 1870-1884
- 212 Zhu Y, Tchkonia T, Fuhrmann-Stroissnigg H. et al. Identification of a novel senolytic agent, navitoclax, targeting the Bcl-2 family of anti-apoptotic factors. Aging Cell 2016; 15 (03) 428-435
- 213 Watanabe Y, Abe H, Kimura N. et al. Navitoclax improves acute-on-chronic liver failure by eliminating senescent cells in mice. Hepatol Res 2023; 53 (05) 460-472
- 214 Yang Z, Gao S, Wong CC. et al. TUBB4B is a novel therapeutic target in non-alcoholic fatty liver disease-associated hepatocellular carcinoma. J Pathol 2023; 260 (01) 71-83
- 215 Baar MP, Brandt RMC, Putavet DA. et al. Targeted apoptosis of senescent cells restores tissue homeostasis in response to chemotoxicity and aging. Cell 2017; 169 (01) 132-147.e16
- 216 Fuhrmann-Stroissnigg H, Ling YY, Zhao J. et al. Identification of HSP90 inhibitors as a novel class of senolytics. Nat Commun 2017; 8 (01) 422
- 217 Ma B, Ju A, Zhang S. et al. Albumosomes formed by cytoplasmic pre-folding albumin maintain mitochondrial homeostasis and inhibit nonalcoholic fatty liver disease. Signal Transduct Target Ther 2023; 8 (01) 229
- 218 Kirkland JL, Tchkonia T. Senolytic drugs: from discovery to translation. J Intern Med 2020; 288 (05) 518-536
- 219 Radonjić T, Dukić M, Jovanović I. et al. Aging of liver in its different diseases. Int J Mol Sci 2022; 23 (21) 13085
- 220 Henschke A. et al. Cellular senescence and nanoparticle-based therapies: current developments and perspectives. Nanotechnol Rev 2024 13. (01)