Subscribe to RSS
DOI: 10.1055/a-2625-6966
Digitale Erfassung von Verlaufsparametern bei Patienten mit Multipler Sklerose
Eine PilotstudieAuthors

Zusammenfassung
Es ist mittlerweile zunehmend Konsens, dass beim schubförmigen Verlaufstyp der Multiplen Sklerose (MS) von Anfang an auch schleichende Verschlechterungen stattfinden, die als Progression independent of Relapse Activity (PIRA) bezeichnet werden und im Rahmen von smoldering Lesions (Schwelbränden) auftreten. Um solche schleichenden Veränderungen klinisch erfassen zu können, ist die Expanded Disability Status Scale (EDSS) nicht ausreichend sensitiv. Die vorliegende Studie untersuchte, inwieweit Smartphone-Erhebungen mittels eigens dafür entwickelter Software (hier am Beispiel von Emendia) geeignet sind, um sensitiv Verlaufsveränderungen bei Patient*innen mit MS (PmMS) zu erfassen.
Insgesamt n = 40 PmMS nahmen an der Studie teil. Vor, während und nach einer etwa 5wöchigen Rehabilitationsbehandlung wurden sie aufgefordert, die Smartphone-App Emendia zu nutzen, um Feinmotorik, Gehfähigkeit, kognitive Defizite, Fatigue und den Patient determined Disease Steps Score (PDDS-Score) zu erheben. Mit einem Mehrebenenmodell wurden der Effekt der Rehabilitation (Rehabilitationsvariable) sowie allgemeine Veränderungen über die Zeit (Zeitvariable) untersucht.
Die Ergebnisse konnten zeigen, dass sich die Leistung bei allen Tests durch die Rehabilitation verbesserte. Durch die Integration der Rehabilitationsvariable verbesserte sich die Modellpassung für alle 6 Tests signifikant. Die Interaktion zwischen der Rehabilitationsvariable und der Zeitvariable wurde dagegen nur für den Symbol Digit Modalities Test (SDMT) signifikant.
Es ergab sich eine hohe Übereinstimmung zwischen dem von Neurolog*innen ermittelten EDSS und dem von den PmMS mittels Emendia ermittelten PDDS Score. Des Weiteren zeigte sich, dass viele PmMS motiviert waren, die App regelmäßig zu benutzen, wodurch Veränderungen der Handmotorik, der Gehfähigkeit und der Informationsverarbeitungsgeschwindigkeit über die Zeit dargestellt werden konnten. Auf der aktuellen Datenbasis lässt sich allerdings nicht final unterscheiden, in welchem Ausmaß Verbesserungen der Symptome auf den Rehabilitationseffekt oder auf einen Übungseffekt zurückzuführen sind.
Wir schlussfolgern, dass sich mittels Emendia die Dokumentation von Verläufen bei PmMS verbessern lässt und sich damit auch progrediente klinische Symptome, die nicht durch Schübe verursacht sind, identifizieren lassen.
Abstract
There is increasing evidence that even in relapsing forms of multiple sclerosis (MS), gradual deterioration occurs from the onset of the disease, which is referred to as „progression independent of relapse activity“ (PIRA) and takes place in the context of „smouldering lesions“. The Expanded Disability Status Scale (EDSS) is not sufficiently sensitive to detect such gradual changes clinically. The present study investigated the extent to which smartphone-based surveys (here using the Emendia app as a tool) are suitable for sensitively recording changes in the disease course in patients with MS (PwMS).
A total of n = 40 PwMS took part in the study. Before, during, and after a 5 week rehabilitation program, patients were asked to use the smartphone app Emendia to record fine motor skills, walking ability, cognitive deficits, fatigue and the patient-determined disease steps (PDDS) score. A multilevel model was used to calculate the impact of rehabilitation (rehabilitation variable) and changes over time in general (time variable).
Results showed that the performance in all tests improved significantly as a result of the rehabilitation program. The inclusion of the rehabilitation variable improved the model fit for all six tests. However, the interaction between the rehabilitation variable and the time variable was only significant for the Symbol Digit Modalities Test (SDMT). Moreover, there was a high agreement between EDSS as determined by the neurologist and the PDDS score as documented by the patient using Emendia.
It was also found that many patients were motivated to carry out the tests via smartphone, which made it possible to detect changes in hand motor skills, walking ability and information processing speed over time. However, on the basis of the current data, it is not possible to conclusively distinguish between improvements in symptoms due to a rehabilitation effect or due to a practice effect.
We conclude that the Emendia app can be used to improve the documentation of progression in PwMS and thus contributes to a more sensitive and timely identification of progressive courses independent of relapses.
Schlüsselwörter
Multiple Sklerose - Verlaufsparameter - digitale Parameter - Symbol Digit Modalities Test - Progression - Smartphone - Rehabilitation - PIRA - schubunabhängige VerschlechterungKeywords
Multiple Sclerosis - outcome parameter - digital parameter - Symbol Digit Modalities test - progression - smartphone - rehabilitation - PIRA - progression independent of relapse activityPublication History
Article published online:
14 October 2025
© 2025. Thieme. All rights reserved.
Georg Thieme Verlag KG
Oswald-Hesse-Straße 50, 70469 Stuttgart, Germany
-
Literatur
- 1 Kuhlmann T, Moccia M, Coetzee T. et al. Multiple sclerosis progression: time for a new mechanism-driven framework. Lancet Neurol 2023; 22: 78-88
- 2 Moloney E, Mashayekhi A, Sharma S. et al. Comparative efficacy and tolerability of ublituximab vs other monoclonal antibodies in the treatment of relapsing multiple sclerosis: a systematic review and network meta-analysis of randomized trials. Front Neurol 2024; 15: 1479476
- 3 Fox R, Bar-Or A, Traboulsee A. et al. Efficacy and safety of tolebrutinib versus placebo in non-relapsing secondary progressive multiple sclerosis: results from the Phase 3 HERCULES trial. Presented at: 2024 ECTRIMS O136
- 4 Kappos L, Wolinsky JS, Giovannoni G. et al. Contribution of relapse-independent progression vs relapse-associated worsening to overall confirmed disability accumulation in typical relapsing multiple sclerosis in a pooled analysis of 2 randomized clinical trials. JAMA Neurol 2020; 77: 1132-1140
- 5 Giovannoni G, Popescu V, Wuerfel J. et al. Smouldering multiple sclerosis: the ‘real MS’. Ther Adv Neurol Disord 2022; 15 17562864211066751
- 6 Scalfari A, Traboulsee A, Oh J. et al. Smouldering-associated worsening in multiple sclerosis: an international consensus statement on definition, biology, clinical implications, and future directions. Ann Neurol 2024; 96: 826-845
- 7 Portaccio E, Bellinvia A, Fonderico M. et al. Progression is independent of relapse activity in early multiple sclerosis: a real-life cohort study. Brain 2022; 145: 2796-2805
- 8 Montalban X, Graves J, Midaglia L. et al. A smartphone sensor-based digital outcome assessment of multiple sclerosis. Mult Scler 2022; 28: 654-664
- 9 Boukhvalova AK, Fan O, Weideman AM. et al. Smartphone Level Test measures disability in several neurological domains for patients with multiple sclerosis. Front Neurol 2019; 10: 358
- 10 Pratap A, Grant D, Vegesna A. et al. Evaluating the utility of smartphone-based sensor assessments in persons with multiple sclerosis in the real world using an app (elevateMS): observational, prospective pilot digital health study. JMIR Mhealth Uhealth 2020; 8: e22108
- 11 Collins CD, Ivry B, Bowen JD. et al. A comparative analysis of patient-reported Expanded Disability Status Scale tools. Mult Scler 2016; 22: 1349-1358
- 12 Ratzker PK, Feldman JM, Scheinberg LC. et al. Self-assessment of neurologic impairment in multiple sclerosis. J Neurol Rehabil 1997; 11: 207-211
- 13 Romeo AR, Rowles WM, Schleimer ES. et al. An electronic, unsupervised patient-reported Expanded Disability Status Scale for multiple sclerosis. Mult Scler 2021; 27: 1432-1441
- 14 Lang M, Cepek L, Rau D. et al. Steigerung der Therapietreue durch niederschwellige Kontakte. Nervenheilkd 2022; 41: 497-501
- 15 Lang M, Rau D, Cepek L. et al. An ID-associated application to facilitate patient-tailored management of multiple sclerosis. Brain Sci 2021; 11: 1061
- 16 Foong YC, Bridge F, Merlo D. et al. Smartphone monitoring of cognition in people with multiple sclerosis: a systematic review. Mult Scler Relat Disord 2023; 73: 104674
- 17 Benedict RH, DeLuca J, Phillips G. et al. Validity of the Symbol Digit Modalities Test as a cognition performance outcome measure for multiple sclerosis. Mult Scler 2017; 23: 721-733
- 18 Cheng WY, Bourke AK, Lipsmeier F. et al. U-turn speed is a valid and reliable smartphone-based measure of multiple sclerosis-related gait and balance impairment. Gait Posture 2021; 84: 120-126
- 19 Flachenecker P, Kümpfel T, Kallmann B. et al. Fatigue in multiple sclerosis: a comparison of different rating scales and correlation to clinical parameters. Mult Scler 2002; 8: 523-526
- 20 Fisk JD, Ritvo PG, Ross L. et al. Measuring the functional impact of fatigue: initial validation of the Fatigue Impact Scale. Clin Infect Dis 1994; 18 (Suppl. 1) S79-S83
- 21 Hautzinger M, Keller F, Kühner C. Das Beck Depressionsinventar II. Deutsche Bearbeitung und Handbuch zum BDI II. Harcourt Test Services. 2006 Accessed July 23, 2025 at: https://www.testzentrale.de/shop/beck-depressions-inventar.html
- 22 Kühner C, Bürger C, Keller F. et al. Reliabilität und Validität des revidierten Beck-Depressionsinventars (BDI-II). Nervenarzt 2007; 78: 651-656
- 23 R Core Team R. A language and environment for statistical computing [software].. Vienna: R Foundation for Statistical Computing; 2024. Accessed July 23, 2025 at: https://www.r-project.org/
- 24 R Studio Team RStudio: Integrated Development Environment for R [software]. Boston: Posit; 2024. Accessed July 23, 2025 at: http://www.rstudio.com/
- 25 Pruessner JC, Kirschbaum C, Meinlschmid G. et al. Two formulas for computation of the area under the curve represent measures of total hormone concentration versus time-dependent change. Psychoneuroendocrinology 2003; 28: 916-931
- 26 Kister I, Bacon T, Cutter GR. How multiple sclerosis symptoms vary by age, sex, and race/ethnicity. Neurol Clin Pract 2021; 11: 335-341
- 27 Bland M, Altman D. Statistical methods for assessing agreement between two methods of clinical measurement. Lancet 1986; 327: 307-310