Subscribe to RSS
DOI: 10.1055/a-2623-4661
Aktuelle integrative und supportive Therapieoptionen bei Post-Treatment Lyme Disease Syndrome (PTLDS) und Chronischer Lyme-Disease (CLD)
Teil 2: Hochdosis-Vitamin-C-Therapie (HDVC-Therapie) und antimikrobielle photodynamische Therapie (PDT) bei Chronic Lyme Disease (CLD)
Zusammenfassung
Bei der Lyme-Borreliose übertragen Zecken die Krankheitserreger von infizierten Tieren auf den Menschen. Von der Spätmanifestation der Infektion, auch als „Chronische Lyme-Borreliose“ (CLD) bezeichnet, ist das „Posttherapeutische Lyme-Borreliose-Syndrom“ (PTLDS) abzugrenzen, wie in Teil 1 in Ausgabe 1/2025 erläutert. In vielen Fällen reichen bei einer Borreliose antibiotische Maßnahmen allein nicht aus. Als ergänzende Therapieansätze werden zunehmend die „Hochdosis-Vitamin-C-Therapie“ (HDVC-Therapie) und antibakterielle „photodynamische Therapie“ (PDT) diskutiert. Sie haben potenziell entzündungshemmende und antimikrobielle Wirkung, was eine Betrachtung und Erwägung bei der Behandlung des Symptomkomplexes PTLDS/CLD rechtfertigt.
Schlüsselwörter
Lyme-Borreliose - Zecke - Post-Treatment Lyme Disease Syndrome (PTLDS) - Chronische Lyme-Disease (CLD) - Biofilm - Erregerpersistenz - Hochdosis-Vitamin-C-Therapie (HDVC-Therapie) - antimikrobielle photodynamische Therapie (PDT)Publication History
Article published online:
07 July 2025
© 2025. Thieme. All rights reserved.
Georg Thieme Verlag KG
Oswald-Hesse-Straße 50, 70469 Stuttgart, Germany
-
Literatur
- 1 Vrijmoeth HD, Ursinus J, Harms MG. et al. Determinants of persistent symptoms after treatment for Lyme borreliosis: a prospective observational cohort study. EBioMedicine 2023; 98: 104825
- 2 van de Schoor FR, Baarsma ME, Gauw SA. et al. Evaluation and 1-year follow-up of patients presenting at a Lyme borreliosis expertise centre: a prospective cohort study with validated questionnaires. Eur J Clin Microbiol Infect Dis 2024; 43: 937-946
- 3 Stewart PS, Costerton JW. Antibiotic resistance of bacteria in biofilms. Lancet 2001; 358: 135-138
- 4 Tournier JP, Marcy PY, Perronne C. The importance of combined Candida & Borrelia biofilms in Lyme’s disease and the value of ultrasound treatment: A medical hypothesis. Med Hypotheses 2025; 194: 111522
- 5 Sapi E, Kaur N, Anyanwu S. et al. Evaluation of in-vitro antibiotic susceptibility of different morphological forms of Borrelia burgdorferi. Infect Drug Resist 2011; 4: 97-113
- 6 Sapi E, Bastian SL, Mpoy CM. et al. Characterization of biofilm formation by Borrelia burgdorferi in vitro. PLoS One 2012; 7: e48277
- 7 Sapi E, Balasubramanian K, Poruri A. et al. Evidence of In Vivo Existence of Borrelia Biofilm in Borrelial Lymphocytomas. Eur J Microbiol Immunol (Bp) 2016; 6: 9-24
- 8 Sapi E, Kasliwala RS, Ismail H. et al. The Long-Term Persistence of Borrelia burgdorferi Antigens and DNA in the Tissues of a Patient with Lyme Disease. Antibiotics (Basel) 2019; 8: 183
- 9 Stricker RB, Winger EE. Decreased CD57 lymphocyte subset in patients with chronic Lyme disease. Immunol Lett 2001; 76: 43-48
- 10 Stricker RB, Burrascano J, Winger E. Longterm decrease in the CD57 lymphocyte subset in a patient with chronic Lyme disease. Ann Agric Environ Med 2002; 9: 111-113
- 11 Stricker RB, Winger EE. Natural killer cells in chronic Lyme disease. Clin Vaccine Immunol 2009; 16: 1704 author reply 1704–1706
- 12 Marques A, Brown MR, Fleisher TA. Natural killer cell counts are not different between patients with post-Lyme disease syndrome and controls. Clin Vaccine Immunol 2009; 16: 1249-1250
- 13 Nielsen CM, White MJ, Goodier MR, Riley EM. Functional Significance of CD57 Expression on Human NK Cells and Relevance to Disease. Front Immunol 2013; 4: 422
- 14 Espinosa P, Urra JM. Decreased Expression of the CD57 Molecule in T Lymphocytes of Patients with Chronic Fatigue Syndrome. Mol Neurobiol 2019; 56: 6581-6585
- 15 Kramer M, Gröber U, Schütz B, Welt T. Aktuelle Integrative und supportive Therapieoptionen bei Post-Treatment Lyme Disease Syndrome (PTLDS) und Chronischer Lyme Disease (CLD). Teil 1: Epidemiologie, Klinik sowie leitliniengerechte Diagnostik und Therapie der Lyme Borreliose. OM – Zs f Orthomol Med 2025; 23: 30-40
- 16 Shor S, Green C, Szantyr B. et al. Chronic Lyme Disease: An Evidence-Based Definition by the ILADS Working Group. Antibiotics (Basel) 2019; 8: 269
- 17 Stricker RB, Fesler MF. Chronic Lyme Disease: A Working Case Definition. Am J Infect Dis 2018; 14: 1-14
- 18 Tichauer C, Corroon J, Fain R. et al. High dose intravenous vitamin C for lyme disease: a safety and tolerability study with an exploratory assessment of treatment efficacy. Medical Research Archives (esmed) 2024; 12: 1-26
- 19 Jiang J, Lv X, Cheng H. et al. Type I photodynamic antimicrobial therapy: Principles, progress, and future perspectives. Acta Biomater 2024; 177: 1-19
- 20 Boylan JA, Posey JE, Gherardini FC. Borrelia oxidative stress response regulator, BosR: a distinctive Zn-dependent transcriptional activator. Proc Natl Acad Sci U S A 2003; 100: 11684-11689
- 21 Codolo G, Amedei A, Steere AC. et al. Borrelia burgdorferi NapA-driven Th17 cell inflammation in lyme arthritis. Arthritis Rheum 2008; 58: 3609-3617
- 22 Codolo G, Papinutto E, Polenghi A. et al. Structure and immunomodulatory property relationship in NapA of Borrelia burgdorferi. Biochim Biophys Acta 2010; 1804: 2191-2197
- 23 Davis MM, Brock AM, DeHart TG. et al. The peptidoglycan-associated protein NapA plays an important role in the envelope integrity and in the pathogenesis of the lyme disease spirochete. PLoS Pathog 2021; 17: e1009546
- 24 Fraser CM, Casjens S, Huang WM. et al. Genomic sequence of a Lyme disease spirochaete, Borrelia burgdorferi. Nature 1997; 390: 580-586
- 25 Halliwell B, Gutteridge JM. Role of free radicals and catalytic metal ions in human disease: an overview. Methods Enzymol 1990; 186: 1-85
- 26 Imlay JA. Pathways of oxidative damage. Annu Rev Microbiol 2003; 57: 395-418
- 27 Tasaka Y, Gombos Z, Nishiyama Y. et al. Targeted mutagenesis of acyl-lipid desaturases in Synechocystis: evidence for the important roles of polyunsaturated membrane lipids in growth, respiration and photosynthesis. EMBO J 1996; 15: 6416-6425
- 28 Peacock BN, Gherezghiher TB, Hilario JD, Kellermann GH. New insights into Lyme disease. Redox Biol 2015; 5: 66-70
- 29 Boylan JA, Lawrence KA, Downey JS, Gherardini FC. Borrelia burgdorferi membranes are the primary targets of reactive oxygen species. Mol Microbiol 2008; 68: 786-799
- 30 Chen Q, Espey MG, Sun AY. et al. Ascorbate in pharmacologic concentrations selectively generates ascorbate radical and hydrogen peroxide in extracellular fluid in vivo. Proc Natl Acad Sci U S A 2007; 104: 8749-8754
- 31 Levine M, Padayatty SJ, Espey MG. Vitamin C: a concentration-function approach yields pharmacology and therapeutic discoveries. Adv Nutr 2011; 2: 78-88
- 32 Gröber U, Holzhauer P, Kisters K. et al. Micronutrients in Oncological Intervention. Nutrients 2016; 8: 163
- 33 Böttger F, Vallés-Martí A, Cahn L, Jimenez CR. High-dose intravenous vitamin C, a promising multi-targeting agent in the treatment of cancer. J Exp Clin Cancer Res 2021; 40: 343
- 34 Padayatty SJ, Levine M. Vitamin C: the known and the unknown and Goldilocks. Oral Dis 2016; 22: 463-493
- 35 Lane DJ, Merlot AM, Huang ML. et al. Cellular iron uptake, trafficking and metabolism: Key molecules and mechanisms and their roles in disease. Biochim Biophys Acta 2015; 1853: 1130-1144
- 36 Schümann K, Ettle T, Szegner B. et al. Risiken und Nutzen der Eisensupplementation: Empfehlungen zur Eisenaufnahme kritisch betrachtet. Perspectives in Medicine 2014; 2: 19-39
- 37 Winterbourn CC. Toxicity of iron and hydrogen peroxide: the Fenton reaction. Toxicol Lett 1995; 82–83: 969-974
- 38 Dixon SJ, Lemberg KM, Lamprecht MR. et al. Ferroptosis: an iron-dependent form of nonapoptotic cell death. Cell 2012; 149: 1060-1072
- 39 Martins ML, da Silva AT, Machado RP. et al. Vitamin C decreases reduced glutathione in chronic haemodialysis patients: a pilot, randomised, double-blind trial. Int Urol Nephrol 2021; 53: 1695-1704
- 40 Levy R, Shriker O, Porath A. et al. Vitamin C for the treatment of recurrent furunculosis in patients with imparied neutrophil functions. J Infect Dis 1996; 173: 1502-1505
- 41 Jeong YJ, Hong SW, Kim JH. et al. Vitamin C-treated murine bone marrow-derived dendritic cells preferentially drive naïve T cells into Th1 cells by increased IL-12 secretions. Cell Immunol 2011; 266: 192-199
- 42 Lusitani D, Malawista SE, Montgomery RR. Borrelia burgdorferi are susceptible to killing by a variety of human polymorphonuclear leukocyte components. J Infect Dis 2002; 185: 797-804
- 43 Goc A, Niedzwiecki A, Rath M. In vitro evaluation of antibacterial activity of phytochemicals and micronutrients against Borrelia burgdorferi and Borrelia garinii. J Appl Microbiol 2015; 119: 1561-1572
- 44 Goc A, Niedzwiecki A, Rath M. Anti-borreliae efficacy of selected organic oils and fatty acids. BMC Complement Altern Med 2019; 19: 40
- 45 Abdelraheem WM, Refaie MM, Yousef RK. et al. Assessment of Antibacterial and Anti-biofilm Effects of Vitamin C Against Pseudomonas aeruginosa Clinical Isolates. Front Microbiol 2022; 13: 847449
- 46 Pandit S, Ravikumar V, Abdel-Haleem AM. et al. Low Concentrations of Vitamin C Reduce the Synthesis of Extracellular Polymers and Destabilize Bacterial Biofilms. Front Microbiol 2017; 8: 2599
- 47 Hoang BX, Han BO, Fang WH. et al. The Rationality of Implementation of Dimethyl Sulfoxide as Differentiation-inducing Agent in Cancer Therapy. Cancer Diagn Progn 2023; 3: 1-8
- 48 Cavaliere R, Ball JL, Turnbull L, Whitchurch CB. The biofilm matrix destabilizers, EDTA and DNaseI, enhance the susceptibility of nontypeable Hemophilus influenzae biofilms to treatment with ampicillin and ciprofloxacin. Microbiologyopen 2014; 3: 557-567
- 49 Gröber U. HDVC. In: Gröber U. Mikronährstoffe: Metabolic Tuning-Prävention-Therapie. Stuttgart: Wissenschaftliche Verlagsges; 2011. 118 ff
- 50 Agostinis P, Berg K, Cengel KA. et al. Photodynamic therapy of cancer: an update. CA Cancer J Clin 2011; 61: 250-281
- 51 Weber MH, Fußgänger-May T, Wolf T. Die intravasale Laserblutbestrahlung – Vorstellung einer neuen Therapiemethode. Dtsch Z Akupunkt 2007; 50: 12-23
- 52 Weber M, Weber R, Junggebauer M. Medizinische Low-Level-Lasertherapie. Grundlagen und klinische Anwendung. 2. Aufl. Starnberg: Füchtenbusch Verlag;; 2015
- 53 Daniell MD, Hill JS. A history of photodynamic therapy. Aust N Z J Surg 1991; 61: 340-348
- 54 Hamblin MR, Hasan T. Photodynamic therapy: a new antimicrobial approach to infectious disease?. Photochem Photobiol Sci 2004; 3: 436-450
- 55 Harpain L, Radakovic S. Photodynamische Therapie – aktuelle Trends. hautnah 2023; 22: 55-62
- 56 Collin F. Chemical Basis of Reactive Oxygen Species Reactivity and Involvement in Neurodegenerative Diseases. Int J Mol Sci 2019; 20: 2407
- 57 Sze CW, Lynch MJ, Zhang K. et al. Lactate dehydrogenase is the Achilles' heel of Lyme disease bacterium Borreliella burgdorferi. mBio 2025; 16: e0372824
- 58 Bourret TJ, Boyle WK, Zalud AK. et al. The relapsing fever spirochete Borrelia turicatae persists in the highly oxidative environment of its soft-bodied tick vector. Cell Microbiol 2019; 21(2): e12987