Subscribe to RSS
DOI: 10.1055/a-2591-4525
Das alte(rnde) Lymphgefäßsystem
The Aging Lymphatic System
Zusammenfassung
Das lymphatische System ist für die Aufrechterhaltung des Flüssigkeitshaushaltes, die Immunüberwachung und die Lipidabsorption unerlässlich. Das Altern führt jedoch zu einer fortschreitenden Abnahme seiner strukturellen Integrität und funktionellen Effizienz, ein Phänomen, das als lymphatische Seneszenz bekannt ist. Diese Übersichtsarbeit untersucht die Mechanismen, die diesem Rückgang zugrunde liegen, einschließlich endothelialer Dysfunktion, beeinträchtigter Kontraktilität der lymphatischen glatten Muskelzellen und chronischer Entzündungen, die gemeinsam zu einer verminderten Immunfunktion, einer ineffizienten Abfallbeseitigung und einer erhöhten Anfälligkeit für altersbedingte Krankheiten wie Herz-Kreislauf-Erkrankungen, Lymphödeme und Krebsmetastasen beitragen. Darüber hinaus untersuchen wir, wie Veränderungen in der Dichte der Lymphgefäße, ihrer Durchlässigkeit und ihrer Regenerationsfähigkeit diese Dysfunktionen noch verschlechtern. Schließlich erörtern wir potenzielle therapeutische Strategien, einschließlich auf die Lymphe ausgerichtete Therapien, entzündungshemmende Maßnahmen und Modifikationen des Lebensstils, die die lymphatische Alterung abmildern und den allgemeinen Gesundheitszustand älterer Menschen verbessern könnten. Das Verständnis der Prozesse, die die lymphatische Seneszenz vorantreiben, ist entscheidend für die Entwicklung gezielter Interventionen zur Erhaltung der Immunfunktion und der Gewebehomöostase in alternden Bevölkerungsgruppen.
Abstract
The lymphatic system maintains fluid balance, immune surveillance, and lipid absorption. However, aging leads to a progressive decline in structural integrity and functional efficiency, known as lymphatic senescence. This review examines this decline’s mechanisms, including endothelial dysfunction, impaired lymphatic smooth muscle contractility, and chronic inflammation. These contribute to reduced immune function, inefficient waste clearance, and heightened susceptibility to age-related diseases such as cardiovascular disorders, lymphedema, and cancer metastasis. Additionally, we explore how changes in lymphatic vessel density, permeability, and regenerative capacity exacerbate these dysfunctions. Finally, we discuss potential therapeutic strategies, including lymphatic-targeted therapies, anti-inflammatory interventions, and lifestyle modifications, which may mitigate lymphatic aging and improve overall health outcomes in older people. Understanding the processes driving lymphatic senescence is crucial for developing targeted interventions to preserve immune function and tissue homeostasis in aging populations.
Schlüsselwörter
lymphatische Seneszenz - endotheliale Dysfunktion - chronische Entzündung - Lymphangiogenese - therapeutische StrategienKeywords
lymphatic senescence - endothelial dysfunction - chronic inflammation - lymphangiogenesis - therapeutic strategiesPublication History
Received: 03 February 2025
Accepted after revision: 16 April 2025
Article published online:
04 June 2025
© 2025. Thieme. All rights reserved.
Georg Thieme Verlag KG
Oswald-Hesse-Straße 50, 70469 Stuttgart, Germany
-
Literatur
- 1 Lei PJ, Ruscic KJ, Roh K. et al. Aging-induced changes in lymphatic muscle cell transcriptomes are associated with reduced pumping of peripheral collecting lymphatic vessels in mice. Dev Cell 2024;
- 2 Cueni LN, Detmar M. The lymphatic system in health and disease. Lymphat Res Biol 2008; 6: 109-122
- 3 Li G, Cao Y, Tang X. et al. The meningeal lymphatic vessels and the glymphatic system: Potential therapeutic targets in neurological disorders. J Cereb Blood Flow Metab 2022; 42: 1364-1382
- 4 Filelfi SL, Onorato A, Brix B. et al. Lymphatic Senescence: Current Updates and Perspectives. Biology (Basel) 2021; 10: 293
- 5 Iyer D, Jannaway M, Yang Y. et al. Lymphatic Valves and Lymph Flow in Cancer-Related Lymphedema. Cancers (Basel) 2020; 12
- 6 Zolla V, Nizamutdinova IT, Scharf B. et al. Aging-related anatomical and biochemical changes in lymphatic collectors impair lymph transport, fluid homeostasis, and pathogen clearance. Aging Cell 2015; 14: 582-594
- 7 Brakenhielm E, Sultan I, Alitalo K. Cardiac Lymphangiogenesis in CVDs. Arterioscler Thromb Vasc Biol 2024; 44: 1016-1020
- 8 Liu X, Oliver G. The Lymphatic Vasculature in Cardiac Development and Ischemic Heart Disease. Circ Res 2023; 132: 1246-1253
- 9 Orlov R, Borisov A, Borisova R. Lymphatic vessels. Structure and mechanisms of contractile activity. Leningrad, USSR: Nauka 1983; 253.
- 10 Kataru RP, Park HJ, Shin J. et al. Structural and Functional Changes in Aged Skin Lymphatic Vessels. Front Aging 2022; 3: 864860
- 11 Karaman S, Buschle D, Luciani P. et al. Decline of lymphatic vessel density and function in murine skin during aging. Angiogenesis 2015; 18: 489-498
- 12 Bridenbaugh EA, Nizamutdinova IT, Jupiter D. et al. Lymphatic muscle cells in rat mesenteric lymphatic vessels of various ages. Lymphat Res Biol 2013; 11: 35-42
- 13 Mignini F, Sabbatini M, Coppola L. et al. Analysis of nerve supply pattern in human lymphatic vessels of young and old men. Lymphat Res Biol 2012; 10: 189-197
- 14 Nagai T, Bridenbaugh EA, Gashev AA. Aging-associated alterations in contractility of rat mesenteric lymphatic vessels. Microcirculation 2011; 18: 463-473
- 15 Arroyo-Ataz G, Jones D. Overview of Lymphatic Muscle Cells in Development, Physiology, and Disease. Microcirculation 2024; 31: e12887
- 16 Gashev AA, Zawieja DC. Hydrodynamic regulation of lymphatic transport and the impact of aging. Pathophysiology 2010; 17: 277-287
- 17 Thangaswamy S, Bridenbaugh EA, Gashev AA. Evidence of increased oxidative stress in aged mesenteric lymphatic vessels. Lymphat Res Biol 2012; 10: 53-62
- 18 Muthuchamy M, Zawieja D. Molecular regulation of lymphatic contractility. Ann N Y Acad Sci 2008; 1131: 89-99
- 19 Liang Q, Zhang L, Xu H. et al. Lymphatic muscle cells contribute to dysfunction of the synovial lymphatic system in inflammatory arthritis in mice. Arthritis Res Ther 2021; 23: 58
- 20 Cribb MT, Sestito LF, Rockson SG. et al. The Kinetics of Lymphatic Dysfunction and Leukocyte Expansion in the Draining Lymph Node during LTB(4) Antagonism in a Mouse Model of Lymphedema. Int J Mol Sci 2021; 22: 4455
- 21 Yang Y, Wang X, Wang P. Signaling mechanisms underlying lymphatic vessel dysfunction in skin aging and possible anti-aging strategies. Biogerontology 2023; 24: 727-740
- 22 Solari E, Marcozzi C, Negrini D. et al. Lymphatic Vessels and Their Surroundings: How Local Physical Factors Affect Lymph Flow. Biology (Basel) 2020; 9
- 23 Pillay V, Shukla L, Herle P. et al. Radiation therapy attenuates lymphatic vessel repair by reducing VEGFR-3 signalling. Front Pharmacol 2023; 14: 1152314
- 24 Kajiya K, Hirakawa S, Detmar M. Vascular endothelial growth factor-A mediates ultraviolet B-induced impairment of lymphatic vessel function. Am J Pathol 2006; 169: 1496-1503
- 25 Brenner E. Weshalb hat der Mensch Lymphgefäße?. In: Cornely ME, Marsch WC, Brenner E. , Hrsg. Angewandte Lymphologie : Grundlagen – Alltag – Perspektiven. Berlin, Heidelberg: Springer; 2023: 3-30
- 26 Nizamutdinova IT, Dusio GF, Gasheva OY. et al. Mast cells and histamine are triggering the NF-kappaB-mediated reactions of adult and aged perilymphatic mesenteric tissues to acute inflammation. Aging (Albany NY) 2016; 8: 3065-3090
- 27 Shang T, Liang J, Kapron CM. et al. Pathophysiology of aged lymphatic vessels. Aging (Albany NY) 2019; 11: 6602-6613
- 28 Scallan JP, Jannaway M. Lymphatic Vascular Permeability. Cold Spring Harb Perspect Med 2022; 12
- 29 Scallan JP, Hill MA, Davis MJ. Lymphatic vascular integrity is disrupted in type 2 diabetes due to impaired nitric oxide signalling. Cardiovasc Res 2015; 107: 89-97
- 30 Hu Z, Zhao X, Wu Z. et al. Lymphatic vessel: origin, heterogeneity, biological functions, and therapeutic targets. Signal Transduct Target Ther 2024; 9: 9
- 31 Rockson SG. Diagnosis and management of lymphatic vascular disease. J Am Coll Cardiol 2008; 52: 799-806
- 32 Peluzzo AM, Bkhache M, Do LNH. et al. Differential regulation of lymphatic junctional morphology and the potential effects on cardiovascular diseases. Front Physiol 2023; 14: 1198052
- 33 Ponikowska B, Fudim M, Iwanek G. et al. Harnessing the lymphatic system. Heart Fail Rev 2024;
- 34 Budamagunta V, Foster TC, Zhou D. Cellular senescence in lymphoid organs and immunosenescence. Aging (Albany NY) 2021; 13: 19920-19941
- 35 Thompson HL, Smithey MJ, Surh CD. et al. Functional and Homeostatic Impact of Age-Related Changes in Lymph Node Stroma. Front Immunol 2017; 8: 706
- 36 Becklund BR, Purton JF, Ramsey C. et al. The aged lymphoid tissue environment fails to support naive T cell homeostasis. Sci Rep 2016; 6: 30842
- 37 Ji RC. The emerging importance of lymphangiogenesis in aging and aging-associated diseases. Mech Ageing Dev 2024; 221: 111975
- 38 Wilcox BK, Henley MR, Navaneethabalakrishnan S. et al. Hypertensive Stimuli Indirectly Stimulate Lymphangiogenesis through Immune Cell Secreted Factors. Cells 2022; 11
- 39 Gonzalez-Loyola A, Petrova TV. Development and aging of the lymphatic vascular system. Adv Drug Deliv Rev 2021; 169: 63-78
- 40 Franceschi C, Bonafe M, Valensin S. et al. Inflamm-aging. An evolutionary perspective on immunosenescence. Ann N Y Acad Sci 2000; 908: 244-254
- 41 Ortiz-Montero P, Londono-Vallejo A, Vernot JP. Senescence-associated IL-6 and IL-8 cytokines induce a self- and cross-reinforced senescence/inflammatory milieu strengthening tumorigenic capabilities in the MCF-7 breast cancer cell line. Cell Commun Signal 2017; 15: 17
- 42 Yu YC, Yang PM, Chuah QY. et al. Radiation-induced senescence in securin-deficient cancer cells promotes cell invasion involving the IL-6/STAT3 and PDGF-BB/PDGFR pathways. Sci Rep 2013; 3: 1675
- 43 Dong Z, Luo Y, Yuan Z. et al. Cellular senescence and SASP in tumor progression and therapeutic opportunities. Mol Cancer 2024; 23: 181
- 44 Coppe JP, Patil CK, Rodier F. et al. Senescence-associated secretory phenotypes reveal cell-nonautonomous functions of oncogenic RAS and the p53 tumor suppressor. PLoS Biol 2008; 6: 2853-2868
- 45 Özcan S, Alessio N, Acar MB. et al. Unbiased analysis of senescence associated secretory phenotype (SASP) to identify common components following different genotoxic stresses. Aging (Albany NY) 2016; 8: 1316-1329
- 46 Shen CY, Li KJ, Wu CH. et al. Unveiling the molecular basis of inflamm-aging induced by advanced glycation end products (AGEs)-modified human serum albumin (AGE-HSA) in patients with different immune-mediated diseases. Clin Immunol 2023; 252: 109655
- 47 Czarnowska E, Ratajska A, Jankowska-Steifer E. et al. Extracellular matrix molecules associated with lymphatic vessels in health and disease. Histol Histopathol 2024; 39: 13-34
- 48 Van’t Hull EF, Bron S, Henry L. et al. Bone marrow-derived cells are implicated as a source of lymphatic endothelial progenitors in human breast cancer. Oncoimmunology 2014; 3: e29080
- 49 DiMaio TA, Wentz BL, Lagunoff M. Isolation and characterization of circulating lymphatic endothelial colony forming cells. Exp Cell Res 2016; 340: 159-169
- 50 Conrad C, Niess H, Huss R. et al. Multipotent mesenchymal stem cells acquire a lymphendothelial phenotype and enhance lymphatic regeneration in vivo. Circulation 2009; 119: 281-289
- 51 Yang Y, Chen XH, Li FG. et al. In vitro induction of human adipose-derived stem cells into lymphatic endothelial-like cells. Cell Reprogram 2015; 17: 69-76
- 52 Saha S, Graham F, Knopp J. et al. Robust Differentiation of Human Pluripotent Stem Cells into Lymphatic Endothelial Cells Using Transcription Factors. Cells Tissues Organs 2024; 213: 464-474
- 53 Ahmadi O, McCall JL, Stringer MD. Does senescence affect lymph node number and morphology? A systematic review. ANZ J Surg 2013; 83: 612-618
- 54 Liu Y, Fang Y, Dong P. et al. Effect of vascular endothelial growth factor C (VEGF-C) gene transfer in rat model of secondary lymphedema. Vascul Pharmacol 2008; 49: 44-50
- 55 Yoon YS, Murayama T, Gravereaux E. et al. VEGF-C gene therapy augments postnatal lymphangiogenesis and ameliorates secondary lymphedema. J Clin Invest 2003; 111: 717-725
- 56 Szuba A, Skobe M, Karkkainen MJ. et al. Therapeutic lymphangiogenesis with human recombinant VEGF-C. FASEB J 2002; 16: 1985-1987
- 57 Tervala TV, Hartiala P, Tammela T. et al. Growth factor therapy and lymph node graft for lymphedema. J Surg Res 2015; 196: 200-207
- 58 Honkonen KM, Visuri MT, Tervala TV. et al. Lymph node transfer and perinodal lymphatic growth factor treatment for lymphedema. Ann Surg 2013; 257: 961-967
- 59 Kilarski WW. Physiological Perspective on Therapies of Lymphatic Vessels. Adv Wound Care (New Rochelle) 2018; 7: 189-208
- 60 Saaristo A, Karkkainen MJ, Alitalo K. Insights into the molecular pathogenesis and targeted treatment of lymphedema. Ann N Y Acad Sci 2002; 979: 94-110
- 61 Brandao ML, Soares H, Andrade MDA. et al. Efficacy of complex decongestive therapy for lymphedema of the lower limbs: a systematic review. J Vasc Bras 2020; 19: e20190074
- 62 Domingues AC, Alves BC, dos Reis Miranda VC. et al. Terapia complexa descongestiva no tratamento de linfedema pós-mastectomia. Fisioterapia Brasil 2021; 22: 272-289
- 63 Lasinski BB, McKillip Thrift K, Squire D. et al. A systematic review of the evidence for complete decongestive therapy in the treatment of lymphedema from 2004 to 2011. PM R 2012; 4: 580-601
- 64 Cobbe S, Nugent K, Real S. Pilot Study: The Effectiveness of Complex Decongestive Therapy for Lymphedema in Palliative Care Patients with Advanced Cancer. J Palliat Med 2018; 21: 473-478
- 65 Liao SF, Huang MS, Li SH. et al. Complex decongestive physiotherapy for patients with chronic cancer-associated lymphedema. J Formos Med Assoc 2004; 103: 344-348
- 66 Sezgin Ozcan D, Dalyan M, Unsal Delialioglu S. et al. Complex Decongestive Therapy Enhances Upper Limb Functions in Patients with Breast Cancer-Related Lymphedema. Lymphat Res Biol 2018; 16: 446-452
- 67 Nieto M, Konigsberg M, Silva-Palacios A. Quercetin and dasatinib, two powerful senolytics in age-related cardiovascular disease. Biogerontology 2024; 25: 71-82
- 68 Xu M, Pirtskhalava T, Farr JN. et al. Senolytics improve physical function and increase lifespan in old age. Nat Med 2018; 24: 1246-1256
- 69 Robbins PD, Jurk D, Khosla S. et al. Senolytic Drugs: Reducing Senescent Cell Viability to Extend Health Span. Annu Rev Pharmacol Toxicol 2021; 61: 779-803
- 70 Sureda A, Tejada S, Bibiloni Mdel M. et al. Polyphenols: well beyond the antioxidant capacity: polyphenol supplementation and exercise-induced oxidative stress and inflammation. Curr Pharm Biotechnol 2014; 15: 373-379
- 71 Piller N. Lymphatic senescence – can we counteract it through lymphatic system stimulation?. Journal of Theoretical and Applied Vascular Research 2024; 9: 13-16
- 72 Hespe GE, Kataru RP, Savetsky IL. et al. Exercise training improves obesity-related lymphatic dysfunction. J Physiol 2016; 594: 4267-4282
- 73 Pinto-Ferreira E. Effect of body movements in the venous blood flow and lymphatic circulation. Open Science Journal 2021; 6
- 74 Maccarone MC, Venturini E, Menegatti E. et al. Water-based exercise for upper and lower limb lymphedema treatment. J Vasc Surg Venous Lymphat Disord 2023; 11: 201-209
- 75 Pasyar N, Barshan Tashnizi N, Mansouri P. et al. Effect of yoga exercise on the quality of life and upper extremity volume among women with breast cancer related lymphedema: A pilot study. Eur J Oncol Nurs 2019; 42: 103-109
- 76 Freguia S, Platano D, Donati D. et al. Closing the Gaps: An Integrative Review of Yoga’s Benefits for Lymphedema in Breast Cancer Survivors. Life (Basel) 2024; 14: 999
- 77 Garcia-Caballero M, Zecchin A, Souffreau J. et al. Role and therapeutic potential of dietary ketone bodies in lymph vessel growth. Nat Metab 2019; 1: 666-675
- 78 Pinto A, Bonucci A, Maggi E. et al. Anti-Oxidant and Anti-Inflammatory Activity of Ketogenic Diet: New Perspectives for Neuroprotection in Alzheimer’s Disease. Antioxidants (Basel) 2018; 7: 63