J Knee Surg
DOI: 10.1055/a-2585-4806
Original Article

Variable Return-to-Sport Rates with Improved Pain and Patient-Reported Outcomes Following Osteochondral Allograft Transplantation: A Systematic Review

Justin Fengyuan Xie
1   Charles E. Schmidt College of Medicine, Florida Atlantic University, Boca Raton, Florida
,
Garrett R. Jackson
2   Department of Orthopaedic Surgery, University of Missouri, Columbia, Missouri
,
Justin T. Childers
1   Charles E. Schmidt College of Medicine, Florida Atlantic University, Boca Raton, Florida
,
1   Charles E. Schmidt College of Medicine, Florida Atlantic University, Boca Raton, Florida
,
Colton C. Mowers
3   Rush University Medical College, Chicago, Illinois
,
Steven F. DeFroda
2   Department of Orthopaedic Surgery, University of Missouri, Columbia, Missouri
,
2   Department of Orthopaedic Surgery, University of Missouri, Columbia, Missouri
› Institutsangaben

Abstract

Osteochondral allograft transplantation (OCA) of the knee is a reliable surgical technique for managing symptomatic full-thickness chondral lesions ≥2 cm2 in young and active patients. There is a need for comprehensive analysis of recent studies among a growing body of literature to better understand the outcomes of OCA among athletic patients, particularly in terms of return to sports participation and graft longevity. To systematically review existing literature reporting the return-to-sport (RTS) outcomes and patient-reported outcome measures (PROMs) following OCA of the knee among athletic patients. A systematic review was performed in PubMed, Web of Science, and Embase from database inception through December 22, 2024. Studies that reported RTS outcomes after knee OCA were included. Data were analyzed descriptively, and methodological quality was assessed using the Methodological Index for Non-Randomized Studies. Inclusion criteria were met by 13 studies involving 699 patients. The mean patient age was 31.8 years (range 15.2–52.6), with a mean follow-up of 59.9 months (range 24–87.5). Reported RTS rates ranged from 59.4 to 90.9%. The mean time to RTS ranged from 9.0 to 14.6 months; one study documented a median RTS time of 16 months. Between 27.3 and 79.1% of athletes made RTS at the same level, 13.5 to 63.6% at higher levels, and 9.1 to 31.6% at lower levels. Significant (p < 0.05) improvements were noted in Tegner (delta −1.8 to 1.4), Visual Analog Scale-Pain (delta −5.7 to −3.7), and International Knee Documentation Committee scores (delta 25 to 33.0). The most common complications were deep vein thrombosis/pulmonary embolism (1.3%), symptomatic hardware (0.72%), and infections (0.72%). Graft failure ranged from 0 to 10.8%, and reoperation from 0 to 50%. OCA of the knee demonstrates variable RTS rates, with improved postoperative pain and outcomes scores. Graft failure occurred in 0 to 10.8% of patients. IV, Systematic Review of Level III and IV studies.

Supplementary Material



Publikationsverlauf

Eingereicht: 20. März 2025

Angenommen: 12. April 2025

Accepted Manuscript online:
14. April 2025

Artikel online veröffentlicht:
09. Mai 2025

© 2025. Thieme. All rights reserved.

Thieme Medical Publishers, Inc.
333 Seventh Avenue, 18th Floor, New York, NY 10001, USA

 
  • References

  • 1 Widuchowski W, Widuchowski J, Trzaska T. Articular cartilage defects: study of 25,124 knee arthroscopies. Knee 2007; 14 (03) 177-182
  • 2 Dekker TJ, Aman ZS, DePhillipo NN, Dickens JF, Anz AW, LaPrade RF. Chondral lesions of the knee: an evidence-based approach. J Bone Joint Surg Am 2021; 103 (07) 629-645
  • 3 Cavendish PA, Everhart JS, Peters NJ, Sommerfeldt MF, Flanigan DC. Osteochondral allograft transplantation for knee cartilage and osteochondral defects: a review of indications, technique, rehabilitation, and outcomes. JBJS Rev 2019; 7 (06) e7
  • 4 Thakkar AP, Zhang T, Bodine M. et al. Trends in knee cartilage repair procedures in the United States, 2010 to 2020. J Cartil Jt Preserv 2024; 4: 100219
  • 5 Frank RM, Cotter EJ, Hannon CP, Harrast JJ, Cole BJ. Cartilage restoration surgery: incidence rates, complications, and trends as reported by the American Board of Orthopaedic Surgery Part II candidates. Arthroscopy 2019; 35 (01) 171-178
  • 6 Nielsen ES, McCauley JC, Pulido PA, Bugbee WD. Return to sport and recreational activity after osteochondral allograft transplantation in the knee. Am J Sports Med 2017; 45 (07) 1608-1614
  • 7 McCarthy MA, Meyer MA, Weber AE. et al. Can competitive athletes return to high-level play after osteochondral allograft transplantation of the knee?. Arthroscopy 2017; 33 (09) 1712-1717
  • 8 Gilat R, Haunschild ED, Huddleston HP. et al. Osteochondral allograft transplant for focal cartilage defects of the femoral condyles: clinically significant outcomes, failures, and survival at a minimum 5-year follow-up. Am J Sports Med 2021; 49 (02) 467-475
  • 9 Gross AE, Kim W, Las Heras F, Backstein D, Safir O, Pritzker KP. Fresh osteochondral allografts for posttraumatic knee defects: long-term followup. Clin Orthop Relat Res 2008; 466 (08) 1863-1870
  • 10 Crawford ZT, Schumaier AP, Glogovac G, Grawe BM. Return to sport and sports-specific outcomes after osteochondral allograft transplantation in the knee: a systematic review of studies with at least 2 years' mean follow-up. Arthroscopy 2019; 35 (06) 1880-1889
  • 11 Page MJ, McKenzie JE, Bossuyt PM. et al. The PRISMA 2020 statement: an updated guideline for reporting systematic reviews. Int J Surg 2021; 88: 105906
  • 12 Moore M, Vargas L, Hanidu I. et al. Immune hypersensitivity is associated with higher graft failure rate after osteochondral allograft transplantation of the knee. Arthrosc Sports Med Rehabil 2024; 6 (03) 100933
  • 13 Cotter EJ, Frank RM, Wang KC. et al. Clinical outcomes of osteochondral allograft transplantation for secondary treatment of osteochondritis dissecans of the knee in skeletally mature patients. Arthroscopy 2018; 34 (04) 1105-1112
  • 14 Markus DH, Hurley ET, Haskel JD. et al. High return to sport in patients over 45 years of age undergoing osteochondral allograft transplantation for isolated chondral defects in the knee. Cartilage 2021; 13 (Suppl. 01) 915S-919S
  • 15 Triana J, Hughes AJ, Rao N. et al. Comparable clinical and functional outcomes between osteochondral allograft transplantation and autologous chondrocyte implantation for articular cartilage lesions in the patellofemoral joint at a mean follow-up of 5 years. Arthroscopy 2025; 41 (03) 745-758
  • 16 Allahabadi S, Quigley R, Frazier L, Joyce K, Cole BJ. Outcomes and return to sport after knee osteochondral allograft transplant in professional athletes. Orthop J Sports Med 2024;12(02):23259671241226738
  • 17 Cook JL, Rucinski K, Crecelius CR, Ma R, Stannard JP. Return to sport after large single-surface, multisurface, or bipolar osteochondral allograft transplantation in the knee using shell grafts. Orthop J Sports Med 2021; 9 (01) 2325967120967928
  • 18 Triana J, DeClouette B, Montgomery Jr SR. et al. Increased kinesiophobia leads to lower return to sport rate and clinical outcomes following osteochondral allograft transplantation of the knee. Knee Surg Sports Traumatol Arthrosc 2024; 32 (02) 490-498
  • 19 Balazs GC, Wang D, Burge AJ, Sinatro AL, Wong AC, Williams III RJ. Return to play among elite basketball players after osteochondral allograft transplantation of full-thickness cartilage lesions. Orthop J Sports Med 2018; 6 (07) 2325967118786941
  • 20 Liu JN, Agarwalla A, Christian DR. et al. Return to sport following high tibial osteotomy with concomitant osteochondral allograft transplantation. Am J Sports Med 2020; 48 (08) 1945-1952
  • 21 Krych AJ, Robertson CM, Williams III RJ. Cartilage Study Group. Return to athletic activity after osteochondral allograft transplantation in the knee. Am J Sports Med 2012; 40 (05) 1053-1059
  • 22 Lyon R, Nissen C, Liu XC, Curtin B. Can fresh osteochondral allografts restore function in juveniles with osteochondritis dissecans of the knee?. Clin Orthop Relat Res 2013; 471 (04) 1166-1173
  • 23 Slim K, Nini E, Forestier D, Kwiatkowski F, Panis Y, Chipponi J. Methodological index for non-randomized studies (minors): development and validation of a new instrument. ANZ J Surg 2003; 73 (09) 712-716
  • 24 Toyooka S, Moatshe G, Persson A, Engebretsen L. Return to pivoting sports after cartilage repair surgery of the knee: a scoping review. Cartilage 2023; 14 (01) 17-25
  • 25 Gracitelli GC, Tirico LE, McCauley JC, Pulido PA, Bugbee WD. Fresh osteochondral allograft transplantation for fractures of the knee. Cartilage 2017; 8 (02) 155-161
  • 26 Sadr KN, Pulido PA, McCauley JC, Bugbee WD. Osteochondral allograft transplantation in patients with osteochondritis dissecans of the knee. Am J Sports Med 2016; 44 (11) 2870-2875
  • 27 Cook JL, Rucinski K, Leary EV. et al. Midterm outcomes after osteochondral allograft transplantation in the knee using high-chondrocyte viability grafts. Am J Sports Med 2024; 52 (13) 3244-3254
  • 28 Wang T, Gao SL, McCauley JC, Densley SM, Bugbee WD. Outcomes after osteochondral allograft transplantation of the medial femoral condyle in patients with varus and nonvarus alignment. Am J Sports Med 2024; 52 (12) 3013-3020
  • 29 Daud A, Safir OA, Gross AE, Kuzyk PR. Outcomes of plug osteochondral allograft transplantation with or without concomitant osteotomy for cartilage defects in the knee: minimum 2-year follow-up. J Am Acad Orthop Surg 2023; 31 (02) e73-e81
  • 30 Daud A, Safir OA, Gross AE, Kuzyk PRT. Outcomes of bulk fresh osteochondral allografts for cartilage restoration in the knee. J Bone Joint Surg Am 2021; 103 (22) 2115-2125
  • 31 Early S, Tírico LEP, Pulido PA, McCauley JC, Bugbee WD. Long-term retrospective follow-up of fresh osteochondral allograft transplantation for steroid-associated osteonecrosis of the femoral condyles. Cartilage 2021; 12 (01) 24-30
  • 32 Schmidt KJ, Tírico LE, McCauley JC, Bugbee WD. Fresh osteochondral allograft transplantation: Is graft storage time associated with clinical outcomes and graft survivorship?. Am J Sports Med 2017; 45 (10) 2260-2266
  • 33 Wang D, Rebolledo BJ, Dare DM. et al. Osteochondral allograft transplantation of the knee in patients with an elevated body mass index. Cartilage 2019; 10 (02) 214-221
  • 34 Murphy RT, Pennock AT, Bugbee WD. Osteochondral allograft transplantation of the knee in the pediatric and adolescent population. Am J Sports Med 2014; 42 (03) 635-640
  • 35 Nassar JE, Guerin G, Keel T. et al. Autologous chondrocyte implantation, matrix-induced autologous chondrocyte implantation, osteochondral autograft transplantation and osteochondral allograft improve knee function and pain with considerations for patient and cartilage defects characteristics: A systematic review and meta-analysis. Knee Surg Sports Traumatol Arthrosc 2024; . Epub ahead of print.
  • 36 Trofa DP, Hong IS, Lopez CD. et al. Isolated osteochondral autograft versus allograft transplantation for the treatment of symptomatic cartilage lesions of the knee: a systematic review and meta-analysis. Am J Sports Med 2023; 51 (03) 812-824
  • 37 Everhart JS, Campbell AB, Abouljoud MM, Kirven JC, Flanigan DC. Cost-efficacy of knee cartilage defect treatments in the United States. Am J Sports Med 2020; 48 (01) 242-251
  • 38 Mistry H, Metcalfe A, Smith N. et al. The cost-effectiveness of osteochondral allograft transplantation in the knee. Knee Surg Sports Traumatol Arthrosc 2019; 27 (06) 1739-1753
  • 39 Cook JL, Stannard JP, Stoker AM. et al. A bedside-to-bench-to-bedside journey to advance osteochondral allograft transplantation towards biologic joint restoration. J Knee Surg 2025; 38 (05) 256-271
  • 40 Nuelle CW, Gelber PE, Waterman BR. Osteochondral allograft transplantation in the knee. Arthroscopy 2024; 40 (03) 663-665
  • 41 Nikolaou VS, Giannoudis PV. History of osteochondral allograft transplantation. Injury 2017; 48 (07) 1283-1286
  • 42 Cameron JI, Pulido PA, McCauley JC, Bugbee WD. Osteochondral allograft transplantation of the femoral trochlea. Am J Sports Med 2016; 44 (03) 633-638
  • 43 Jamali AA, Emmerson BC, Chung C, Convery FR, Bugbee WD. Fresh osteochondral allografts: results in the patellofemoral joint. Clin Orthop Relat Res 2005; (437) 176-185
  • 44 Cinque ME, Kennedy NI, Moatshe G. et al. Osteochondral allograft transplants for large trochlear defects. Arthrosc Tech 2017; 6 (05) e1703-e1707
  • 45 Briggs DT, Sadr KN, Pulido PA, Bugbee WD. The use of osteochondral allograft transplantation for primary treatment of cartilage lesions in the knee. Cartilage 2015; 6 (04) 203-207
  • 46 Gracitelli GC, Meric G, Pulido PA, McCauley JC, Bugbee WD. Osteochondral allograft transplantation for knee lesions after failure of cartilage repair surgery. Cartilage 2015; 6 (02) 98-105
  • 47 Dandu N, Horner NS, Trasolini NA. et al. Anatomic factors associated with osteochondral allograft matching for trochlear cartilage defects: a computer-simulation study. Am J Sports Med 2022; 50 (13) 3571-3578
  • 48 Elias TJ, Credille K, Wang Z. et al. Patient-specific distal femoral guides optimize cartilage topography matching in osteochondral allograft transplantations. Am J Sports Med 2024; 52 (10) 2547-2554
  • 49 Tírico LEP, McCauley JC, Pulido PA, Bugbee WD. Does anterior cruciate ligament reconstruction affect the outcome of osteochondral allograft transplantation? A matched cohort study with a mean follow-up of 6 years. Am J Sports Med 2018; 46 (08) 1836-1843
  • 50 Kunze KN, Ramkumar PN, Manzi JE, Wright-Chisem J, Nwachukwu BU, Williams III RJ. Risk factors for failure after osteochondral allograft transplantation of the knee: A systematic review and exploratory meta-analysis. Am J Sports Med 2023; 51 (05) 1356-1367
  • 51 Lai WC, Bohlen HL, Fackler NP, Wang D. Osteochondral allografts in knee surgery: narrative review of evidence to date. Orthop Res Rev 2022; 14: 263-274