Z Orthop Unfall
DOI: 10.1055/a-2577-7304
Original Article

Plantar Sensation and Muscle Activity During a Step on Various Textured Unstable Surfaces in Patients with Anterior Cruciate Ligament Reconstruction – Comparison with Healthy Controls

Plantare Sensibilität und Muskelaktivität während eines Schrittes auf unterschiedlich strukturierte, instabile Oberflächen bei Patienten nach vorderer Kreuzbandrekonstruktion
1   Faculty of Health Care, Therapeutic Sciences, Niederrhein University of Applied Sciences, Krefeld, Germany (Ringgold ID: RIN38909)
,
Nina Plücken
1   Faculty of Health Care, Therapeutic Sciences, Niederrhein University of Applied Sciences, Krefeld, Germany (Ringgold ID: RIN38909)
,
Jonas Klemp
1   Faculty of Health Care, Therapeutic Sciences, Niederrhein University of Applied Sciences, Krefeld, Germany (Ringgold ID: RIN38909)
,
Wilhelm Bloch
2   Institute of Cardiovascular Research and Sport Medicine, Department of Molecular and Cellular Sport Medicine, German Sport University Cologne, Cologne, Germany (Ringgold ID: RIN14926)
› Author Affiliations

Abstract

Background

After anterior cruciate ligament reconstruction (ACLR), patients have been found to have reduced plantar sensation, which may result in reduced afferent input to the central nervous system and thus contribute to motor deficits. Textured surfaces are thought to have a beneficial neurosensory effect. The aim of this cross-sectional study was to compare plantar sensation and leg muscle activity while stepping on different textured surfaces between patients after ACLR and healthy controls.

Methods

Plantar cutaneous thresholds to light touch were measured in 10 patients at least 6 months after ACLR and in 10 healthy controls. Patients or controls were asked to step forward on the centre of a force plate with the affected (ACLR) or randomly assigned (healthy controls) leg and maintain the single-legged stance for 10 seconds (floor condition). They were instructed to perform the same task on a balance board with a textured surface, the same balance board with a smooth surface, and a balance pad in random order. Muscle activity of four leg muscles was recorded using surface electromyography. The significance of differences in plantar sensation and mean muscle activity within three time frames between and within ACLR patients and healthy controls was analysed using non-parametric statistical tests with Bonferroni correction (p < 0.05).

Results

There were no significant differences between patients with ACLR and healthy controls in plantar sensation and muscle activity for all unstable surface conditions (p > 0.05). Friedman tests revealed significant differences in the activities of all muscles between surface conditions at the first peak of the vertical ground reaction force (vGRF) after the rapid increase in the force-time curve (transition from early lifting phase to late lifting phase) within both groups (p < 0.01). Post-hoc Wilcoxon signed-rank tests showed significantly altered activity for most muscles between the smooth and textured balance board conditions only at the first vGRF peak (p ≤ 0.01) in both patients and healthy controls.

Conclusion

Although plantar sensation and muscle activity did not differ between patients with ACLR and healthy controls, altered muscle activity in both groups, especially during the transition from the early to the late lifting phase of stepping on a textured unstable surface, may indicate an acute change in the afferent input of plantar mechanoreceptors in response to the surface stimulus. In addition, it may indicate an acute change in motor output caused by a beneficial neurosensory effect. This effect should be considered with caution due to the small sample size.

Zusammenfassung

Hintergrund

Nach einer vorderen Kreuzbandrekonstruktion (ACLR) können Patienten eine verminderte Sensibilität der Fußsohle aufweisen, was zu einem verminderten afferenten Input an das zentrale Nervensystem führen und somit zu motorischen Defiziten beitragen kann. Es wird angenommen, dass strukturierte Oberflächen einen positiven neurosensorischen Effekt haben. Das Ziel dieser Querschnittsstudie war es, die Sensibilität der Fußsohle und die Aktivität der Beinmuskulatur während eines Schrittes auf verschiedene strukturierte Oberflächen zwischen Patienten nach ACLR und gesunden Kontrollpersonen zu vergleichen.

Methoden

Die kutanen Berührungsschwellen der Fußsohle wurden bei 10 Patienten, mindestens 6 Monate nach einer ACLR, und bei 10 gesunden Kontrollpersonen gemessen. Die Patienten bzw. Kontrollpersonen wurden gebeten, mit dem betroffenen Bein (ACLR) bzw. mit dem zufällig zugewiesenen Bein (gesunde Kontrollpersonen) einen Schritt vorwärts auf die Mitte einer Kraftmessplatte zu machen und diese einbeinige Position 10 s lang zu halten (Bodenbedingung). Die gleiche Aufgabe wurde auf einem Balance Board mit strukturierter Oberfläche, auf einem Balance Board mit glatter Oberfläche und auf einem Balance Pad in zufälliger Reihenfolge durchgeführt. Die Muskelaktivität von 4 Beinmuskeln wurde mittels Oberflächenelektromyografie aufgezeichnet. Die Signifikanz der Unterschiede in der plantaren Sensibilität und der mittleren Muskelaktivität zwischen den ACLR-Patienten und den gesunden Kontrollpersonen über 3 Zeiträume wurde mittels nicht parametrischer statistischer Tests mit Bonferroni-Korrektur analysiert (p < 0,05).

Ergebnisse

Es gab keine signifikanten Unterschiede zwischen den ACLR-Patienten und den gesunden Kontrollpersonen in Bezug auf die plantare Sensibilität und die Muskelaktivität für alle instabilen Oberflächenbedingungen (p > 0,05). Friedman-Tests zeigten signifikante Unterschiede in der Aktivität aller Muskeln zwischen den Oberflächenbedingungen beim 1. Peak der vertikalen Bodenreaktionskraft (vGRF) nach dem rapiden Anstieg der Kraft-Zeit-Kurve (Übergang von der frühen zur späten Hebephase) innerhalb beider Gruppen (p < 0,01). Post-hoc-Wilcoxon-Signed-Rank-Tests zeigten sowohl bei Patienten als auch bei gesunden Kontrollpersonen signifikante Unterschiede in der Aktivität der meisten Muskeln zwischen den glatten und strukturierten Balance-Board-Bedingungen nur beim 1. vGRF-Peak (p ≤ 0,01).

Schlussfolgerung

Obwohl sich die Fußsensibilität und die Muskelaktivität zwischen Patienten mit ACLR und gesunden Kontrollpersonen nicht unterschieden, könnte die veränderte Muskelaktivität in beiden Gruppen, insbesondere während des Übergangs von der frühen zur späten Hebephase beim Schritt auf eine strukturierte, instabile Oberfläche, auf eine akute Veränderung des afferenten Inputs der plantaren Mechanorezeptoren als Reaktion auf den Oberflächenreiz hinweisen. Darüber hinaus könnte dies auf eine akute Veränderung der motorischen Leistung hinweisen, die durch einen positiven neurosensorischen Effekt verursacht wird. Dieser Effekt ist aufgrund der geringen Stichprobengröße mit Vorsicht zu betrachten.



Publication History

Received: 24 November 2024

Accepted after revision: 02 April 2025

Article published online:
28 April 2025

© 2025. Thieme. All rights reserved.

Georg Thieme Verlag KG
Oswald-Hesse-Straße 50, 70469 Stuttgart, Germany

 
  • References

  • 1 Haner M, Petersen W. [Treatment of acute injury of the anterior cruciate ligament: Always only reconstruction?]. Unfallchirurgie (Heidelb) 2024; 127: 8-17
  • 2 Sanders TL, Maradit Kremers H, Bryan AJ. et al. Incidence of Anterior Cruciate Ligament Tears and Reconstruction: A 21-Year Population-Based Study. Am J Sports Med 2016; 44: 1502-1507
  • 3 Riehm CD, Bonnette S, Rush JL. et al. Corticomuscular cross-recurrence analysis reveals between-limb differences in motor control among individuals with ACL reconstruction. Exp Brain Res 2024; 242: 355-365
  • 4 Ito N, Capin JJ, Khandha A. et al. Identifying Gait Pathology after ACL Reconstruction Using Temporal Characteristics of Kinetics and Electromyography. Med Sci Sports Exerc 2022; 54: 923-930
  • 5 Nuccio S, Del Vecchio A, Casolo A. et al. Deficit in knee extension strength following anterior cruciate ligament reconstruction is explained by a reduced neural drive to the vasti muscles. J Physiol 2021; 599: 5103-5120
  • 6 Bonfim TR, Jansen Paccola CA, Barela JA. Proprioceptive and behavior impairments in individuals with anterior cruciate ligament reconstructed knees. Arch Phys Med Rehabil 2003; 84: 1217-1223
  • 7 Staples JR, Schafer KA, Smith MV. et al. Decreased Postural Control in Patients Undergoing Anterior Cruciate Ligament Reconstruction Compared to Healthy Controls. J Sport Rehabil 2020; 29: 920-925
  • 8 Zouita Ben Moussa A, Zouita S, Dziri C. et al. Single-leg assessment of postural stability and knee functional outcome two years after anterior cruciate ligament reconstruction. Ann Phys Rehabil Med 2009; 52: 475-484
  • 9 Banios K, Raoulis V, Fyllos A. et al. Anterior and Posterior Cruciate Ligaments Mechanoreceptors: A Review of Basic Science. Diagnostics (Basel) 2022; 12: 331
  • 10 McGlone F, Reilly D. The cutaneous sensory system. Neurosci Biobehav Rev 2010; 34: 148-159
  • 11 van Wezel BM, van Engelen BG, Gabreels FJ. et al. Abeta fibers mediate cutaneous reflexes during human walking. J Neurophysiol 2000; 83: 2980-2986
  • 12 Fallon JB, Bent LR, McNulty PA. et al. Evidence for strong synaptic coupling between single tactile afferents from the sole of the foot and motoneurons supplying leg muscles. J Neurophysiol 2005; 94: 3795-3804
  • 13 Perry SD. Evaluation of age-related plantar-surface insensitivity and onset age of advanced insensitivity in older adults using vibratory and touch sensation tests. Neurosci Lett 2006; 392: 62-67
  • 14 Collins KA, Turner MJ, Hubbard-Turner T. et al. Gait and plantar sensation changes following massage and textured insole application in patients after anterior cruciate ligament reconstruction. Gait Posture 2020; 81: 254-260
  • 15 Hoch JM, Perkins WO, Hartman JR. et al. Somatosensory deficits in post-ACL reconstruction patients: A case-control study. Muscle Nerve 2017; 55: 5-8
  • 16 McKeon PO, Stein AJ, Ingersoll CD. et al. Altered plantar-receptor stimulation impairs postural control in those with chronic ankle instability. J Sport Rehabil 2012; 21: 1-6
  • 17 Shultz R, Silder A, Malone M. et al. Unstable Surface Improves Quadriceps:Hamstring Co-contraction for Anterior Cruciate Ligament Injury Prevention Strategies. Sports Health 2015; 7: 166-171
  • 18 Risberg MA, Holm I, Myklebust G. et al. Neuromuscular training versus strength training during first 6 months after anterior cruciate ligament reconstruction: a randomized clinical trial. Phys Ther 2007; 87: 737-750
  • 19 Solomonow M, Baratta R, Zhou BH. et al. The synergistic action of the anterior cruciate ligament and thigh muscles in maintaining joint stability. Am J Sports Med 1987; 15: 207-213
  • 20 Tsuda E, Okamura Y, Otsuka H. et al. Direct evidence of the anterior cruciate ligament-hamstring reflex arc in humans. Am J Sports Med 2001; 29: 83-87
  • 21 Gruber M, Gollhofer A. Impact of sensorimotor training on the rate of force development and neural activation. Eur J Appl Physiol 2004; 92: 98-105
  • 22 Deussen S, Alfuth M. The Influence of Sensorimotor Training Modalities on Balance, Strength, Joint Function, and Plantar Foot Sensitivity in Recreational Athletes with a History of Ankle Sprain: A Randomized Controlled Pilot Study. Int J Sports Phys Ther 2018; 13: 993-1007
  • 23 Steinberg N, Adams R, Tirosh O. et al. Effects of Textured Balance Board Training in Adolescent Ballet Dancers With Ankle Pathology. J Sport Rehabil 2019; 28: 584-592
  • 24 Nakamoto M, Ideguchi N, Iwata S. et al. Validity and Reliability of Criteria for Plantar Sensation Assessment Using Semmes-Weinstein Monofilament as a Clinically Usable Index. Int J Environ Res Public Health 2022; 19: 14092
  • 25 Alfuth M, Rosenbaum D. Are diurnal changes in foot sole sensation dependent on gait activity?. Neurosci Lett 2011; 504: 247-251
  • 26 Alfuth M, Ebert M, Klemp J. et al. Biomechanical analysis of single-leg stance using a textured balance board compared to a smooth balance board and the floor: A cross-sectional study. Gait Posture 2021; 84: 215-220
  • 27 Alfuth M, Gomoll M. Electromyographic analysis of balance exercises in single-leg stance using different instability modalities of the forefoot and rearfoot. Phys Ther Sport 2018; 31: 75-82
  • 28 Bejer A, Plocki J, Maciejewski M. et al. Analysis of Vastus Lateralis and Vastus Medialis Activities in Men the Late Post-Surgery Period after ACL Reconstruction with LARS Synthetic Ligament. Ortop Traumatol Rehabil 2021; 23: 193-203
  • 29 Kuenze CM, Hertel J, Hart JM. Quadriceps muscle function after exercise in men and women with a history of anterior cruciate ligament reconstruction. J Athl Train 2014; 49: 740-746
  • 30 Sondang Irawan D, Sinsurin K, Sonsukong A. Alteration of quadriceps muscle activity during functional step tasks after extended sitting session. Knee 2022; 37: 20-27
  • 31 Konrad P. Noraxon INC. The ABC of EMG: A Practical Introduction to Kinesiological Electromyography, Version 1.4. March 2006. Accessed April 14, 2025 at: https://velamed.com/wp-content/uploads/ABC-of-EMG.pdf
  • 32 Merletti R, Botter A, Barone U. Detection and Conditioning of Surface EMG Signals. In: Merletti R, Farina D. , ed. Surface Electromyography: Physiology, Engineering, and Applications. Hoboken, New Jersey: John Wiley & Sons, Inc; 2016: 54-90
  • 33 Ma T, Zhu J, Zhang K. et al. Gait Phase Subdivision and Leg Stiffness Estimation During Stair Climbing. IEEE Trans Neural Syst Rehabil Eng 2022; 30: 860-868
  • 34 von Elm E, Altman DG, Egger M. et al. The Strengthening the Reporting of Observational Studies in Epidemiology (STROBE) statement: guidelines for reporting observational studies. J Clin Epidemiol 2008; 61: 344-349
  • 35 Kenny RPW, Eaves DL, Martin D. et al. The effects of textured insoles on quiet standing balance in four stance types with and without vision. BMC Sports Sci Med Rehabil 2019; 11: 5
  • 36 Hu S, Ma X, Ma X. et al. Relationship of strength, joint kinesthesia, and plantar tactile sensation to dynamic and static postural stability among patients with anterior cruciate ligament reconstruction. Front Physiol 2023; 14: 1112708
  • 37 Hoch JM, Baez SE, Hoch MC. Examination of ankle function in individuals with a history of ACL reconstruction. Phys Ther Sport 2019; 36: 55-61
  • 38 Kempfert DJ, Chaconas EJ, Daugherty ML. et al. Test-retest reliability of quantitative sensory testing, active joint position sense, and functional hop testing in amateur adult athletes with unilateral anterior cruciate ligament reconstruction. Phys Ther Sport 2023; 64: 63-73
  • 39 Agel J, LaPrade RF. Assessment of differences between the modified Cincinnati and International Knee Documentation Committee patient outcome scores: a prospective study. Am J Sports Med 2009; 37: 2151-2157
  • 40 Collins NJ, Misra D, Felson DT. et al. Measures of knee function: International Knee Documentation Committee (IKDC) Subjective Knee Evaluation Form, Knee Injury and Osteoarthritis Outcome Score (KOOS), Knee Injury and Osteoarthritis Outcome Score Physical Function Short Form (KOOS-PS), Knee Outcome Survey Activities of Daily Living Scale (KOS-ADL), Lysholm Knee Scoring Scale, Oxford Knee Score (OKS), Western Ontario and McMaster Universities Osteoarthritis Index (WOMAC), Activity Rating Scale (ARS), and Tegner Activity Score (TAS). Arthritis Care Res (Hoboken) 2011; 63 (Suppl. 11) S208-S228
  • 41 Smale KB, Flaxman TE, Alkjaer T. et al. Anterior cruciate ligament reconstruction improves subjective ability but not neuromuscular biomechanics during dynamic tasks. Knee Surg Sports Traumatol Arthrosc 2019; 27: 636-645
  • 42 Wolburg T, Rapp W, Rieger J. et al. Muscle activity of leg muscles during unipedal stance on therapy devices with different stability properties. Phys Ther Sport 2016; 17: 58-62
  • 43 Robb KA, Perry SD. The suppression of lower leg electromyography when walking in textured foot orthoses. Exp Brain Res 2024; 242: 2367-2380
  • 44 Robb KA, Perry SD. Capitalizing on skin in orthotics design: the effects of texture on plantar intrinsic foot muscles during locomotion. Exp Brain Res 2024; 242: 403-416
  • 45 Desai SS, Cohen-Levy WB. Anatomy, Bony Pelvis and Lower Limb: Tibial Nerve. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2025. Accessed April 14, 2025 at: https://www.ncbi.nlm.nih.gov/books/NBK537028/
  • 46 Yilmaz M, Gungor Y, Salman N. et al. Tibial nerve branching pattern and compatibility of branches for the deep fibular nerve. Surg Radiol Anat 2024; 46: 413-424
  • 47 Torres AL, Ferreira MC. Study of the anatomy of the tibial nerve and its branches in the distal medial leg. Acta Ortop Bras 2012; 20: 157-164
  • 48 Miniato MA, Nedeff N. Anatomy, Bony Pelvis and Lower Limb: Sural Nerve. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2025. Accessed April 14, 2025 at: https://www.ncbi.nlm.nih.gov/books/NBK546638/
  • 49 Duthon VB, Barea C, Abrassart S. et al. Anatomy of the anterior cruciate ligament. Knee Surg Sports Traumatol Arthrosc 2006; 14: 204-213
  • 50 Beynnon BD, Good L, Risberg MA. The effect of bracing on proprioception of knees with anterior cruciate ligament injury. J Orthop Sports Phys Ther 2002; 32: 11-15
  • 51 Farfan E, Rojas S, Olive-Vilas R. et al. Innervation patterns of hamstring muscles, including morphological descriptions and clinical implication. Surg Radiol Anat 2024; 46: 749-760
  • 52 Von Lübken F, Spengler C, Claes C. et al. Das neuromuskuläre Defizit nach Ruptur des vorderen Kreuzbandes – Aktuelle wissenschaftliche Ergebnisse. Schweiz Zeitschr Sportmed Sporttraumatol 2008; 56: 17-22
  • 53 Melnyk M, Faist M, Gothner M. et al. Changes in stretch reflex excitability are related to “giving way” symptoms in patients with anterior cruciate ligament rupture. J Neurophysiol 2007; 97: 474-480
  • 54 Kozanek M, Hosseini A, de Velde SK. et al. Kinematic evaluation of the step-up exercise in anterior cruciate ligament deficiency. Clin Biomech (Bristol) 2011; 26: 950-954
  • 55 Haran FJ, Keshner EA. Sensory reweighting as a method of balance training for labyrinthine loss. J Neurol Phys Ther 2008; 32: 186-191
  • 56 Shumway-Cook A, Woollacott M. Motor Control. Translating Research into Clinical Practice. 4. Philadelphia: Wolters Kluwer Health, Lippincott Williams & Wilkins; 2012
  • 57 Soderberg GL, Knutson LM. A guide for use and interpretation of kinesiologic electromyographic data. Phys Ther 2000; 80: 485-498