neuroreha 2025; 17(02): 77-84
DOI: 10.1055/a-2567-8907
Schwerpunkt

Neuronutrition: Ernährungsmedizin in der Rehabilitation des Schlaganfalls

Lotta Nowak
,
Henriette Saevil
,
Andreas R. Luft
,
Christian Sina

Im Unterschied zu etablierten therapeutischen Maßnahmen wie Physiotherapie und Logopädie findet die Ernährungstherapie bislang nur wenig Beachtung in der Rehabilitation nach einem Schlaganfall. Dies steht im Widerspruch zu aktuellen wissenschaftlichen Erkenntnissen, die zeigen, dass gezielte Ernährungsstrategien einen positiven Einfluss auf Rehabilitationsverläufe haben können. Hierunter fallen Maßnahmen zur Prävention und Therapie von Mangelernährung sowie die Optimierung der Versorgung mit Makro- und Mikronährstoffen. Der Begriff der „Neuronutrition“ verdeutlicht zudem das Potenzial, ernährungstherapeutische Maßnahmen datenbasiert und individuell angepasst einzusetzen. Ein Beispiel sind aktuellere Studien zum Glukose- und Insulinstoffwechsel. Diese verdeutlichen nicht nur die Wichtigkeit einer adäquaten Blutzuckereinstellung für die Wiederherstellung und den Erhalt neurologischer Funktionen nach einem Schlaganfall, sondern eröffnen auch weitreichende Möglichkeiten, um die postprandialen Glukosekonzentration durch personalisierte Ernährung gezielt positiv zu beeinflussen. Die Integration der Ernährungstherapie als fester Bestandteil der Schlaganfallrehabilitation erscheint daher sinnvoll.



Publication History

Article published online:
05 June 2025

© 2025. Thieme. All rights reserved.

Georg Thieme Verlag KG
Oswald-Hesse-Straße 50, 70469 Stuttgart, Germany

 
  • Literatur

  • 1 Ciancarelli I, Morone G, Iosa M. et al. Neuronutrition and its impact on post-stroke neurorehabilitation: Modulating plasticity through diet. Nutrients 2024; 16: 3705
  • 2 Salehi-Abargouei A, Maghsoudi Z, Shirani F. et al. Effects of dietary approaches to Stop Hypertension (DASH)-style diet on fatal or nonfatal cardiovascular diseases – Incidence: A systematic review and meta-analysis on observational prospective studies. Nutrition 2013; 29: 611-618
  • 3 Huang L, Tao Y, Chen H. et al. Mediterranean-dietary approaches to stop hypertension Intervention for Neurodegenerative Delay (MIND) Diet and cognitive function and its decline: A prospective study and meta-analysis of cohort studies. The American Journal of Clinical Nutrition 2023; 118: 174-182
  • 4 Chen H, Dhana K, Huang Y. et al. Association of the Mediterranean dietary approaches to stop hypertension Intervention for Neurodegenerative Delay (MIND) diet with the risk of dementia. JAMA Psychiatry 2023; 80: 630
  • 5 Akbar Z, Fituri S, Ouagueni A. et al. Associations of the MIND diet with cardiometabolic diseases and their risk factors: A systematic review. DMSO 2023; 16: 3353-3371
  • 6 Bach-Faig A, Berry EM, Lairon D. et al. Mediterranean diet pyramid today: Science and cultural updates. Public Health Nutrition 2011; 14: 2274-2284
  • 7 Guo N, Zhu Y, Tian D. et al. Role of diet in stroke incidence: An umbrella review of meta-analyses of prospective observational studies. BMC Med 2022; 20: 194
  • 8 Sánchez-Villegas A, Galbete C, Martinez-González MÁ. et al. The effect of the Mediterranean diet on plasma brain-derived neurotrophic factor (BDNF) levels: The PREDIMED-NAVARRA randomized trial. Nutritional Neuroscience 2011; 14: 195-201
  • 9 Tuncay C, Ergoren MC. A systematic review of precision nutrition and Mediterranean diet: A personalized nutrition approaches for prevention and management of obesity related disorders. Clinical Nutrition ESPEN 2020; 38: 61-64
  • 10 Di Pino G, Pellegrino G, Capone F. et al. Val66Met BDNF polymorphism implies a different way to recover from stroke rather than a worse overall recoverability. Neurorehabil Neural Repair 2016; 30: 3-8
  • 11 Casini I, Ladisa V, Clemente L. et al. A personalized Mediterranean diet improves pain and quality of life in patients with fibromyalgia. Pain Ther 2024; 13: 609-620
  • 12 Makievskaya CI, Popkov VA, Andrianova NV. et al. Ketogenic diet and ketone bodies against ischemic injury: Targets, mechanisms, and therapeutic potential. International Journal of Molecular Sciences 2023; 24: 2576
  • 13 Acuña-Catalán D, Shah S, Wehrfritz C. et al. Ketogenic diet administration later in life improves memory by modifying the synaptic cortical proteome via the PKA signaling pathway in aging mice. Cell Reports Medicine 2024; 5: 101593
  • 14 Yin J, Han P, Tang Z. et al. Sirtuin 3 mediates neuroprotection of ketones against ischemic stroke. J Cereb Blood Flow Metab 2015; 35: 1783-1789
  • 15 Guo X, Kesimer M, Tolun G. et al. The NAD+-dependent protein deacetylase activity of SIRT1 is regulated by its oligomeric status. Sci Rep 2012; 2: 640
  • 16 Edwards MGP, Andersen JR, Curtis DJ. et al. Diet-induced ketosis in adult patients with subacute acquired brain injury: A feasibility study. Front Med (Lausanne) 2024; 10: 1305888
  • 17 Aronica L, Volek J, Poff A. et al. Genetic variants for personalised management of very low carbohydrate ketogenic diets. BMJNPH 2020; 3: 363-373
  • 18 Sifat AE, Nozohouri S, Archie SR. et al. Brain energy metabolism in ischemic stroke: Effects of smoking and diabetes. Int J Mol Sci 2022; 23: 8512
  • 19 Won SJ, Zhang Y, Butler NJ. et al. Stress hyperglycemia exacerbates inflammatory brain injury after stroke. bioRxiv 2024; 2024.05.14.594195
  • 20 Capes SE, Hunt D, Malmberg K. et al. Stress hyperglycemia and prognosis of stroke in nondiabetic and diabetic patients: A systematic overview. Stroke 2001; 32: 2426-2432
  • 21 Gutiérrez-Zúñiga R, Alonso De Leciñana M, Delgado-Mederos R. et al. Beyond hyperglycemia: Glycaemic variability as a prognostic factor after acute ischemic stroke. Neurología 2023; 38: 150-158
  • 22 Spinelli M, Fusco S, Grassi C. Brain insulin resistance impairs hippocampal plasticity. Vitamins and Hormones 2020; 114: 281-306
  • 23 Gudala K, Bansal D, Schifano F. et al. Diabetes mellitus and risk of dementia: A meta-analysis of prospective observational studies. Journal of Diabetes Investigation 2013; 4: 640-650
  • 24 Huang YW, Li ZP, Yin XS. Stress hyperglycemia and risk of adverse outcomes in patients with acute ischemic stroke: A systematic review and dose-response meta-analysis of cohort studies. Front Neurol 2023; 14
  • 25 Li WA, Moore-Langston S, Chakraborty T. et al. Hyperglycemia in stroke and possible treatments. Neurological Research 2013; 35: 479-491
  • 26 Benn M, Emanuelsson F, Tybjærg-Hansen A. et al. Impact of high glucose levels and glucose lowering on risk of ischaemic stroke: A Mendelian randomisation study and meta-analysis. Diabetologia 2021; 64: 1492-1503
  • 27 Ivey FM, Ryan AS, Hafer-Macko CE. et al. High prevalence of abnormal glucose metabolism and poor sensitivity of fasting plasma glucose in the chronic phase of stroke. Cerebrovasc Dis 2006; 22: 368-371
  • 28 Levine DA, Chen B, Galecki AT. et al. Associations between vascular risk factor levels and cognitive decline among stroke survivors. JAMA Network Open 2023; 6: e2313879
  • 29 Yang S, Boudier-Revéret M, Kwon S. et al. Effect of diabetes on post-stroke recovery: A systematic narrative review. Front Neurol 2021; 12: 747878
  • 30 Tram HTH, Tanaka-Mizuno S, Takashima N. et al. Control of diabetes mellitus and long-term prognosis in stroke patients: The Shiga stroke and heart attack registry. Cerebrovasc Dis 2023; 52: 81-88
  • 31 Lau L, Lew J, Borschmann K. et al. Prevalence of diabetes and its effects on stroke outcomes: A meta-analysis and literature review. J of Diabetes Invest 2019; 10: 780-792
  • 32 Bruno A, Kent TA, Coull BM. et al. Treatment of Hyperglycemia In Ischemic. Stroke (THIS). Stroke 2008; 39: 384-389
  • 33 Wu S, Mao Y, Chen S. et al. Safety and efficacy of tight versus loose glycemic control in acute stroke patients: A meta-analysis of randomized controlled trials. International Journal of Stroke 2024; 19: 727-734
  • 34 Staszewski J, Brodacki B, Kotowicz J. et al. Intravenous insulin therapy in the maintenance of strict glycemic control in nondiabetic acute stroke patients with mild Hyperglycemia. Journal of Stroke and Cerebrovascular Diseases 2011; 20: 150-154
  • 35 Scheen AJ. Do SGLT2 inhibitors and GLP-1 receptor agonists modulate differently the risk of stroke? Discordance between randomised controlled trials and observational studies. Diabetes & Metabolism 2023; 49: 101474
  • 36 Wei J, Yang B, Wang R. et al. Risk of stroke and retinopathy during GLP-1 receptor agonist cardiovascular outcome trials: An eight RCTs meta-analysis. Front Endocrinol (Lausanne) 2022; 13: 1007980
  • 37 Wiciński M, Socha M, Malinowski B. et al. Liraglutide and its neuroprotective properties: Focus on possible biochemical mechanisms in Alzheimer’s disease and cerebral ischemic events. Int J Mol Sci 2019; 20: 1050
  • 38 Glotfelty EJ, Delgado TE, Tovar-y-Romo LB. et al. Incretin mimetics as rational candidates for the treatment of traumatic brain injury. ACS Pharmacol Transl Sci 2019; 2: 66-91
  • 39 GLP-1, SGLT2 medications may lower stroke survivor’s risk of future heart attack, stroke. American Heart Association Scientific Sessions 2024, Abstract 4148007 2024; Im Internet https://newsroom.heart.org/news/glp-1-sglt2-medications-may-lower-stroke-survivors-risk-of-future-heart-attack-stroke Stand: 17.02.2025
  • 40 Bladin CF, Wah Cheung N, Dewey HM. et al. Management of poststroke hyperglycemia: Results of the TEXAIS randomized clinical trial. Stroke 2023; 54: 2962-2971
  • 41 Lelleck VV, Schulz F, Witt O. et al. A digital therapeutic allowing a personalized low-glycemic nutrition for the prophylaxis of migraine: Real world data from two prospective studies. Nutrients 2022; 14: 2927
  • 42 Schröder T, Brudermann HCB, Kühn G. et al. Efficacy of the digital therapeutic sinCephalea in the prophylaxis of migraine in patients with episodic migraine: Study protocol for a digital, randomized, open-label, standard treatment controlled trial. Trials 2022; 23: 997
  • 43 Evers S, Grube HCB, Gendolla A. et al. Efficacy of digital therapeutic sinCephalea for personalised nutrition versus control for migraine prevention: A 12-week open-label randomised clinical trial. 2025 [in press]
  • 44 Ben-Yacov O, Godneva A, Rein M. et al. Personalized postprandial glucose response: Targeting diet versus Mediterranean diet for glycemic control in prediabetes. Diabetes Care 2021; 44: 1980-1991
  • 45 Kannenberg S, Voggel J, Thieme N. et al. Unlocking potential: Personalized lifestyle therapy for type 2 diabetes through a predictive algorithm-driven digital therapeutic. J Diabetes Sci Technol 2024; 19322968241266821
  • 46 Alvarez Campano CG, Macleod MJ, Aucott L. et al. Marine-derived n-3 fatty acids therapy for stroke. Cochrane Database Syst Rev 2022; 2022: CD012815
  • 47 Park Y, Watkins BA. Dietary PUFAs and exercise dynamic actions on endocannabinoids in brain: Consequences for neural plasticity and neuroinflammation. Advances in Nutrition 2022; 13: 1989-2001
  • 48 McKendry J, Currier BS, Lim C. et al. Nutritional supplements to support resistance exercise in countering the sarcopenia of aging. Nutrients 2020; 12: 2057
  • 49 Suda S, Katsumata T, Okubo S. et al. Low serum n-3 polyunsaturated fatty acid/n-6 polyunsaturated fatty acid ratio predicts neurological deterioration in Japanese patients with acute ischemic stroke. Cerebrovasc Dis 2013; 36: 388-393
  • 50 Tajik B, Tuomainen TP, Isanejad M. et al. Serum n-6 polyunsaturated fatty acids and risk of atrial fibrillation: The Kuopio ischaemic heart disease risk factor study. Eur J Nutr 2022; 61: 1981-1989
  • 51 Sato T, Okumura M, Ishikawa T. et al. Relationship between ω3 and ω6 polyunsaturated fatty acids and atrial fibrillation in acute ischemic stroke. Clinical Nutrition 2024; 43: 1643-1651
  • 52 Chilton F, Dutta R, Reynolds L. et al. Precision nutrition and omega-3 polyunsaturated fatty acids: A case for personalized supplementation approaches for the prevention and management of human diseases. Nutrients 2017; 9: 1165
  • 53 Shyam S, Lee KX, Tan ASW. et al. Effect of personalized nutrition on dietary, physical activity, and health outcomes: A systematic review of randomized trials. Nutrients 2022; 14: 4104
  • 54 Kissela BM, Khoury JC, Alwell K. et al. Age at stroke. Neurology 2012; 79: 1781-1787
  • 55 Dent E, Wright ORL, Woo J. et al. Malnutrition in older adults. The Lancet 2023; 401: 951-966
  • 56 Rosa AD. Association of nutritional indices and prognosis of stroke patients: A systematic review and meta-analysis. European Review. 2023 Im Internet www.europeanreview.org/article/32819 Stand: 15.01.2025
  • 57 Burgos R, Bretón I, Cereda E. et al. ESPEN guideline clinical nutrition in neurology. Clinical Nutrition 2018; 37: 354-396
  • 58 Sayin AM, Duruturk N, Balaban B. et al. The effect of robot-assisted walking in different modalities on cardiorespiratory responses and energy consumption in patients with subacute stroke. Neurological Research 2023; 45: 688-694
  • 59 Gao Z, Chen H. Advances in the beneficial effects of nutrition on stroke-related Sarcopenia: A narrative review. Medicine (Baltimore) 2023; 102: e34048
  • 60 Scherbakov N, Sandek A, Doehner W. Stroke-related sarcopenia: Specific characteristics. Journal of the American Medical Directors Association 2015; 16: 272-276
  • 61 Hafer-Macko CE, Yu S, Ryan AS. et al. Elevated tumor necrosis factor-α in skeletal muscle after stroke. Stroke 2005; 36: 2021-2023
  • 62 Yoshimura Y, Bise T, Shimazu S. et al. Effects of a leucine-enriched amino acid supplement on muscle mass, muscle strength, and physical function in post-stroke patients with sarcopenia: A randomized controlled trial. Nutrition 2019; 58: 1-6
  • 63 Park MK, Lee SJ, Choi E. et al. The effect of branched chain amino acid supplementation on stroke-related sarcopenia. Front Neurol 2022; 13: 744945
  • 64 Pereira DFC, Parron Fernandes KB, Aguiar AF. et al. The impact of undernutrition risk on rehabilitation outcomes in ischemic stroke survivors: A hospital-based study. Brain Neurorehabil 2024; 17: e7
  • 65 Verstraeten LMG, Sacchi F, van Wijngaarden JP. et al. Sarcopenia, malnutrition and cognition affect physiotherapy frequency during geriatric rehabilitation: RESORT cohort. Annals of Physical and Rehabilitation Medicine 2023; 66: 101735
  • 66 Kothari M, Pillai RS, Kothari SF. et al. Oral health status in patients with acquired brain injury: A systematic review. Oral Surgery, Oral Medicine, Oral Pathology and Oral Radiology 2017; 123: 205-219.e7
  • 67 Dutta TM, Josiah AF, Cronin CA. et al. Altered taste and stroke: A case report and literature review. Top Stroke Rehabil 2013; 20: 78-86
  • 68 Heckman JG, Stössel C, Lang CJG. et al. Taste disorders in acute. stroke. Stroke 2005; 36: 1690-1694
  • 69 Cola PC, Onofri SMM, Rubira CJ. et al. Electrical, taste, and temperature stimulation in patients with chronic dysphagia after stroke: A randomized controlled pilot trial. Acta Neurol Belg 2021; 121: 1157-1164
  • 70 Dietsch AM, Westemeyer RM, Schultz DH. Brain activity associated with taste stimulation: A mechanism for neuroplastic change?. Brain Behav 2023; 13: e2928
  • 71 IDDSI. Complete IDDSI Framework Detailed definitions 2.0. 2019. Im Internet https://www.iddsi.org/images/Publications-Resources/DetailedDefnTestMethods/English/V2DetailedDefnEnglish31july2019.pdf Stand: 18.03.2025
  • 72 Sabbouh T, Torbey MT. Malnutrition in stroke patients: Risk factors, assessment, and management. Neurocrit Care 2018; 29: 374-384
  • 73 Broersen LM, Guida S, Cetinyurek-Yavuz A. et al. Stroke patients have lower blood levels of nutrients that are relevant for recovery: A systematic review and meta-analysis. Front Stroke 2023; 2: 1274555
  • 74 Mirończuk A, Kapica-Topczewska K, Socha K. et al. Selenium, copper, zinc concentrations and Cu/Zn, Cu/Se molar ratios in the serum of patients with acute ischemic stroke in Northeastern Poland: A new insight into stroke pathophysiology. Nutrients 2021; 13: 2139
  • 75 Baudry J, Kopp JF, Boeing H. et al. Changes of trace element status during aging: Results of the EPIC-Potsdam cohort study. Eur J Nutr 2020; 59: 3045-3058
  • 76 Hu XF, Stranges S, Chan LHM. Circulating selenium concentration is inversely associated with the prevalence of stroke: Results from the Canadian health measures survey and the national health and nutrition examination survey. Journal of the American Heart Association 2019; 8: e012290
  • 77 Xu Q, Qian X, Sun F. et al. Independent and joint associations of dietary antioxidant intake with risk of post-stroke depression and all-cause mortality. Journal of Affective Disorders 2023; 322: 84-90
  • 78 Sharifi-Razavi A, Karimi N, Jafarpour H. Evaluation of selenium supplementation in acute ischemic stroke outcome: An outcome assessor blind, randomized, placebo-controlled, feasibility study. Neurology India 2022; 70: 87
  • 79 Mathers JC, Méplan C, Hesketh JE. Polymorphisms affecting trace element bioavailability. International Journal for Vitamin and Nutrition Research 2010; 80: 314-318
  • 80 Chen S, Cai D, Lai Y. et al. Risk factors and outcomes for refeeding syndrome in acute ischaemic stroke patients. Nutrition & Dietetics 2024; 81: 464-471
  • 81 da Silva JSV, Seres DS, Sabino K. et al. ASPEN consensus recommendations for refeeding syndrome. Nutrition in Clinical Practice 2020; 35: 178-195
  • 82 Fahmy E, Sharaf S, Helmy H. et al. Vitamin D status in acute ischemic stroke: Relation to initial severity and short-term outcome. The Egyptian Journal of Neurology, Psychiatry and Neurosurgery 2019; 55: 18
  • 83 Zielińska-Nowak E, Cichon N, Saluk-Bijak J. et al. Nutritional supplements and neuroprotective diets and their potential clinical significance in post-stroke rehabilitation. Nutrients 2021; 13: 2704
  • 84 Almeida OP, Marsh K, Alfonso H. et al. B-vitamins reduce the long-term risk of depression after stroke: The VITATOPS-DEP trial. Annals of Neurology 2010; 68: 503-510
  • 85 da Silva-Araújo ER, Manhães-de-Castro R, Pontes PB. et al. Effects of riboflavin in the treatment of brain damage caused by oxygen deprivation: An integrative systematic review. Nutritional Neuroscience 2024; 27: 989-1007
  • 86 Holton KF. Micronutrients may be a unique weapon against the neurotoxic triad of excitotoxicity, oxidative stress and neuroinflammation: A perspective. Front Neurosci 2021; 15
  • 87 Sandvig HV, Aam S, Alme KN. et al. Neopterin, kynurenine metabolites, and indexes related to vitamin B6 are associated with post-stroke cognitive impairment: The Nor-COAST study. Brain, Behavior, and Immunity 2024; 118: 167-177
  • 88 Wang F, Zheng J, Cheng J. et al. Personalized nutrition: A review of genotype-based nutritional supplementation. Front Nutr 2022; 9
  • 89 Tuma C, Schick A, Pommerening N. et al. Effects of an individualized vs. standardized vitamin D supplementation on the 25(OH)D level in athletes. Nutrients 2023; 15: 4747
  • 90 Wijnen H, Salemink D, Roovers L. et al. Vitamin D supplementation in nursing home patients: Randomized controlled trial of standard daily dose versus individualized loading dose regimen. Drugs Aging 2015; 32: 371-378
  • 91 Fan X, Wang S, Hu S. et al. Host-microbiota interactions: The aryl hydrocarbon receptor in the acute and chronic phases of cerebral ischemia. Front Immunol 2022; 13: 967300
  • 92 Zhang W, Tang R, Yin Y. et al. Microbiome signatures in ischemic stroke: A systematic review. Heliyon 2024; 10: e23743
  • 93 Rahimi A, Qaisar SA, Janeh T. et al. Clinical trial of the effects of postbiotic supplementation on inflammation, oxidative stress, and clinical outcomes in patients with CVA. Sci Rep 2024; 14: 24021
  • 94 Shen X, Mu X. Systematic insights into the relationship between the microbiota-gut-brain axis and stroke with the focus on tryptophan metabolism. Metabolites 2024; 14: 399
  • 95 Saccaro LF, Pico F, Chadenat ML. et al. Platelet, plasma, urinary tryptophan-serotonin-kynurenine axis markers in hyperacute brain ischemia patients: A prospective study. Front Neurol 2022; 12
  • 96 Ticinesi A, Nouvenne A, Cerundolo N. et al. Gut microbiota, muscle mass and function in aging: A focus on physical frailty and sarcopenia. Nutrients 2019; 11: 1633
  • 97 Eng JJ, Tang PF. Gait training strategies to optimize walking ability in people with stroke: A synthesis of the evidence. Expert Rev Neurother 2007; 7: 1417-1436
  • 98 Song EJ, Shin JH. Personalized diets based on the gut microbiome as a target for health maintenance: From current evidence to future possibilities. J Microbiol Biotechnol 2022; 32: 1497-1505
  • 99 Johnson AJ, Vangay P, Al-Ghalith GA. et al. Daily sampling reveals personalized diet-microbiome associations in humans. Cell Host & Microbe 2019; 25: 789-802.e5