Subscribe to RSS
DOI: 10.1055/a-2562-2000
Liver Neurobiology: Regulation of Liver Functions by the Nervous System

Abstract
The nervous system plays an important role in the regulation of liver functions during physiological as well as pathological conditions. This regulatory effect is based on the processing of signals transmitted to the brain by sensory nerves innervating the liver tissue and other visceral organs and by humoral pathways transmitting signals from peripheral tissues and organs. Based on these signals, the brain modulates metabolism, detoxification, regeneration, repair, inflammation, and other processes occurring in the liver. The nervous system thus determines the functional and morphological characteristics of the liver. Liver innervation also mediates the influence of psychosocial factors on liver functions. The aim of this review is to describe complexity of bidirectional interactions between the brain and liver and to characterize the mechanisms and pathways through which the nervous system influences liver function during physiological conditions and maintains liver and systemic homeostasis.
Keywords
cholinergic anti-inflammatory pathway - sympathetic nervous system - sensory nerves - stress - vagus nerveData Availability Statement
Data sharing is not applicable to this article, as no new data were created or analyzed in this study.
Authors' Contributions
Both authors contributed equally to the conception, design, writing, and critical review of the manuscript. B.M. prepared figures.
Publication History
Article published online:
16 April 2025
© 2025. Thieme. All rights reserved.
Thieme Medical Publishers, Inc.
333 Seventh Avenue, 18th Floor, New York, NY 10001, USA
-
References
- 1 Jensen KJ, Alpini G, Glaser S. Hepatic nervous system and neurobiology of the liver. Compr Physiol 2013; 3 (02) 655-665
- 2 Miller BM, Oderberg IM, Goessling W. Hepatic nervous system in development, regeneration, and disease. Hepatology 2021; 74 (06) 3513-3522
- 3 Kandilis AN, Papadopoulou IP, Koskinas J, Sotiropoulos G, Tiniakos DG. Liver innervation and hepatic function: new insights. J Surg Res 2015; 194 (02) 511-519
- 4 Zou J, Li J, Wang X, Tang D, Chen R. Neuroimmune modulation in liver pathophysiology. J Neuroinflammation 2024; 21 (01) 188
- 5 Mravec B, Szantova M. The role of the nervous system in liver diseases. Hepatol Res 2024; 54 (11) 970-980
- 6 Zhu R, Liu L, Zhang G, Dong J, Ren Z, Li Z. The pathogenesis of gut microbiota in hepatic encephalopathy by the gut-liver-brain axis. Biosci Rep 2023; 43 (06) BSR20222524
- 7 Wijdicks EF. Hepatic encephalopathy. N Engl J Med 2016; 375 (17) 1660-1670
- 8 Giuffrè M, Moretti R. The gut-liver-brain axis: from the head to the feet. Int J Mol Sci 2023; 24 (21) 15662
- 9 Sun X, Shukla M, Wang W, Li S. Unlocking gut-liver-brain axis communication metabolites: energy metabolism, immunity and barriers. NPJ Biofilms Microbiomes 2024; 10 (01) 136
- 10 Woodie LN, Melink LC, Midha M. et al. Hepatic vagal afferents convey clock-dependent signals to regulate circadian food intake. Science 2024; 386 (6722) 673-677
- 11 Saxena R. Got nerve? Autonomic innervation of the human liver. Virchows Arch 2020; 477 (03) 383-384
- 12 McCuskey RS. Anatomy of efferent hepatic nerves. Anat Rec A Discov Mol Cell Evol Biol 2004; 280 (01) 821-826
- 13 Martinez-Sanchez N, Sweeney O, Sidarta-Oliveira D, Caron A, Stanley SA, Domingos AI. The sympathetic nervous system in the 21st century: neuroimmune interactions in metabolic homeostasis and obesity. Neuron 2022; 110 (21) 3597-3626
- 14 Chen CC, Peng SJ, Chou YH. et al. Human liver afferent and efferent nerves revealed by 3-D/Airyscan super-resolution imaging. Am J Physiol Endocrinol Metab 2024; 326 (02) E107-E123
- 15 Kyösola K, Penttilä O, Ihamäki T, Varis K, Salaspuro M. Adrenergic innervation of the human liver. A fluorescence histochemical analysis of clinical liver biopsy specimens. Scand J Gastroenterol 1985; 20 (02) 254-256
- 16 Mizuno K, Ueno Y. Autonomic nervous system and the liver. Hepatol Res 2017; 47 (02) 160-165
- 17 Uyama N, Geerts A, Reynaert H. Neural connections between the hypothalamus and the liver. Anat Rec A Discov Mol Cell Evol Biol 2004; 280 (01) 808-820
- 18 Sutherland SD. An evaluation of cholinesterase techniques in the study of the intrinsic innervation of the liver. J Anat 1964; 98 (Pt 3): 321-326
- 19 Amenta F, Cavallotti C, Ferrante F, Tonelli F. Cholinergic nerves in the human liver. Histochem J 1981; 13 (03) 419-424
- 20 Reilly FD, McCuskey PA, McCuskey RS. Intrahepatic distribution of nerves in the rat. Anat Rec 1978; 191 (01) 55-67
- 21 Berthoud HR. Anatomy and function of sensory hepatic nerves. Anat Rec A Discov Mol Cell Evol Biol 2004; 280 (01) 827-835
- 22 Berthoud HR, Münzberg H, Morrison CD, Neuhuber WL. Hepatic interoception in health and disease. Auton Neurosci 2024; 253: 103174
- 23 Studer RK, Borle AB. Differences between male and female rats in the regulation of hepatic glycogenolysis. The relative role of calcium and cAMP in phosphorylase activation by catecholamines. J Biol Chem 1982; 257 (14) 7987-7993
- 24 LeSage GD, Alvaro D, Glaser S. et al. Alpha-1 adrenergic receptor agonists modulate ductal secretion of BDL rats via Ca(2+)- and PKC-dependent stimulation of cAMP. Hepatology 2004; 40 (05) 1116-1127
- 25 LeSagE G, Alvaro D, Benedetti A. et al. Cholinergic system modulates growth, apoptosis, and secretion of cholangiocytes from bile duct-ligated rats. Gastroenterology 1999; 117 (01) 191-199
- 26 Sigala B, McKee C, Soeda J. et al. Sympathetic nervous system catecholamines and neuropeptide Y neurotransmitters are upregulated in human NAFLD and modulate the fibrogenic function of hepatic stellate cells. PLoS One 2013; 8 (09) e72928
- 27 Zheng C, Snow BE, Elia AJ. et al. Tumor-specific cholinergic CD4+ T lymphocytes guide immunosurveillance of hepatocellular carcinoma. Nat Cancer 2023; 4 (10) 1437-1454
- 28 Kasarinaite A, Sinton M, Saunders PTK, Hay DC. The influence of sex hormones in liver function and disease. Cells 2023; 12 (12) 1604
- 29 Mancinelli R, Franchitto A, Glaser S. et al. Vasopressin regulates the growth of the biliary epithelium in polycystic liver disease. Lab Invest 2016; 96 (11) 1147-1155
- 30 Pennisi PA, Kopchick JJ, Thorgeirsson S, LeRoith D, Yakar S. Role of growth hormone (GH) in liver regeneration. Endocrinology 2004; 145 (10) 4748-4755
- 31 Luo D, Jin B, Zhai X. et al. Oxytocin promotes hepatic regeneration in elderly mice. iScience 2021; 24 (02) 102125
- 32 Sternberg EM. Neural regulation of innate immunity: a coordinated nonspecific host response to pathogens. Nat Rev Immunol 2006; 6 (04) 318-328
- 33 Gallowitsch-Puerta M, Pavlov VA. Neuro-immune interactions via the cholinergic anti-inflammatory pathway. Life Sci 2007; 80 (24-25): 2325-2329
- 34 Occhinegro A, McAllen RM, McKinley MJ, Martelli D. Acute inhibition of inflammation mediated by sympathetic nerves: the inflammatory reflex. Neuroimmunomodulation 2023; 30 (01) 135-142
- 35 Hajiasgharzadeh K, Baradaran B. Cholinergic anti-inflammatory pathway and the liver. Adv Pharm Bull 2017; 7 (04) 507-513
- 36 Reardon C, Murray K, Lomax AE. Neuroimmune communication in health and disease. Physiol Rev 2018; 98 (04) 2287-2316
- 37 Rhyu J, Yu R. Newly discovered endocrine functions of the liver. World J Hepatol 2021; 13 (11) 1611-1628
- 38 Yang X, Qiu K, Jiang Y, Huang Y, Zhang Y, Liao Y. Metabolic crosstalk between liver and brain: from diseases to mechanisms. Int J Mol Sci 2024; 25 (14) 7621
- 39 Geerling JJ, Boon MR, Kooijman S. et al. Sympathetic nervous system control of triglyceride metabolism: novel concepts derived from recent studies. J Lipid Res 2014; 55 (02) 180-189
- 40 Kalsbeek A, Fliers E. Hypothalamus. In: Pfaff DW, Volkow ND, Rubenstein JL. eds, Neuroscience in the 21st Century: From Basic to Clinical. Cham: Springer International Publishing; 2022: 1813-1852
- 41 Desmoulins LD, Molinas AJR, Dugas CM. et al. A subset of neurons in the paraventricular nucleus of the hypothalamus directly project to liver-related premotor neurons in the ventrolateral medulla. Auton Neurosci 2025; 257: 103222
- 42 Chan KL, Poller WC, Swirski FK, Russo SJ. Central regulation of stress-evoked peripheral immune responses. Nat Rev Neurosci 2023; 24 (10) 591-604
- 43 Yoneda M, Watanobe H, Terano A. Central regulation of hepatic function by neuropeptides. J Gastroenterol 2001; 36 (06) 361-367
- 44 Yoneda M, Kurosawa M, Watanobe H, Shimada T, Terano A. Brain-gut axis of the liver: the role of central neuropeptides. J Gastroenterol 2002; 37 (Suppl. 14) 151-156
- 45 Lautt WW. Relationship between hepatic blood flow and overall metabolism: the hepatic arterial buffer response. Fed Proc 1983; 42 (06) 1662-1666
- 46 Lautt WW. The hepatic artery: subservient to hepatic metabolism or guardian of normal hepatic clearance rates of humoral substances. Gen Pharmacol 1977; 8 (02) 73-78
- 47 Zanchi A, Reidy J, Feldman HJ. et al. Innervation of the proximal human biliary tree. Virchows Arch 2020; 477 (03) 385-392
- 48 Püschel GP. Control of hepatocyte metabolism by sympathetic and parasympathetic hepatic nerves. Anat Rec A Discov Mol Cell Evol Biol 2004; 280 (01) 854-867
- 49 Ren W, Hua M, Cao F, Zeng W. The sympathetic-immune milieu in metabolic health and diseases: insights from pancreas, liver, intestine, and adipose tissues. Adv Sci (Weinh) 2024; 11 (08) e2306128
- 50 Matsubara Y, Kiyohara H, Teratani T, Mikami Y, Kanai T. Organ and brain crosstalk: The liver-brain axis in gastrointestinal, liver, and pancreatic diseases. Neuropharmacology 2022; 205: 108915
- 51 Lin EE, Scott-Solomon E, Kuruvilla R. Peripheral innervation in the regulation of glucose homeostasis. Trends Neurosci 2021; 44 (03) 189-202
- 52 Hevener AL, Bergman RN, Donovan CM. Novel glucosensor for hypoglycemic detection localized to the portal vein. Diabetes 1997; 46 (09) 1521-1525
- 53 Niijima A. Afferent impulse discharges from glucoreceptors in the liver of the guinea pig. Ann N Y Acad Sci 1969; 157 (02) 690-700
- 54 Thorens B. Neuronal glucose sensing mechanisms and circuits in the control of insulin and glucagon secretion. Physiol Rev 2024; 104 (04) 1461-1486
- 55 Burcelin R, Dolci W, Thorens B. Glucose sensing by the hepatoportal sensor is GLUT2-dependent: in vivo analysis in GLUT2-null mice. Diabetes 2000; 49 (10) 1643-1648
- 56 Niijima A. The effect of D-glucose on the firing rate of glucose-sensitive vagal afferents in the liver in comparison with the effect of 2-deoxy-D-glucose. J Auton Nerv Syst 1984; 10 (3-4): 255-260
- 57 Yi CX, la Fleur SE, Fliers E, Kalsbeek A. The role of the autonomic nervous liver innervation in the control of energy metabolism. Biochim Biophys Acta 2010; 1802 (04) 416-431
- 58 Balkan B, Li X. Portal GLP-1 administration in rats augments the insulin response to glucose via neuronal mechanisms. Am J Physiol Regul Integr Comp Physiol 2000; 279 (04) R1449-R1454
- 59 Pocai A, Obici S, Schwartz GJ, Rossetti L. A brain-liver circuit regulates glucose homeostasis. Cell Metab 2005; 1 (01) 53-61
- 60 Zsombok A, Desmoulins LD, Derbenev AV. Sympathetic circuits regulating hepatic glucose metabolism: where we stand. Physiol Rev 2024; 104 (01) 85-101
- 61 Xu S, Inoue M, Yoshimura Y, Kondoh K, Naruse K, Hiyama TY. Celiac and superior mesenteric ganglia removal improves glucose tolerance and reduces pancreas islet size. Neurosci Lett 2024; 837: 137919
- 62 Liu L, Huang Z, Zhang J. et al. Hypothalamus-sympathetic-liver axis mediates the early phase of stress-induced hyperglycemia in the male mice. Nat Commun 2024; 15 (01) 8632
- 63 Morgan HJN, Delfino HBP, Schavinski AZ. et al. Hepatic noradrenergic innervation acts via CREB/CRTC2 to activate gluconeogenesis during cold. Metabolism 2024; 157: 155940
- 64 Shimazu T. Glycogen synthetase activity in liver: regulation by the autonomic nerves. Science 1967; 156 (3779) 1256-1257
- 65 Song WJ, Cheon DH, Song H. et al. Activation of ChAT+ neuron in dorsal motor vagus (DMV) increases blood glucose through the regulation of hepatic gene expression in mice. Brain Res 2024; 1829: 148770
- 66 Cox JE, Kelm GR, Meller ST, Spraggins DS, Randich A. Truncal and hepatic vagotomy reduce suppression of feeding by jejunal lipid infusions. Physiol Behav 2004; 81 (01) 29-36
- 67 Randich A, Spraggins DS, Cox JE, Meller ST, Kelm GR. Jejunal or portal vein infusions of lipids increase hepatic vagal afferent activity. Neuroreport 2001; 12 (14) 3101-3105
- 68 Warne JP, Foster MT, Horneman HF. et al. Afferent signalling through the common hepatic branch of the vagus inhibits voluntary lard intake and modifies plasma metabolite levels in rats. J Physiol 2007; 583 (Pt 2): 455-467
- 69 Uno K, Yamada T, Ishigaki Y. et al. Hepatic peroxisome proliferator-activated receptor-γ-fat-specific protein 27 pathway contributes to obesity-related hypertension via afferent vagal signals. Eur Heart J 2012; 33 (10) 1279-1289
- 70 Bernal-Mizrachi C, Xiaozhong L, Yin L. et al. An afferent vagal nerve pathway links hepatic PPARalpha activation to glucocorticoid-induced insulin resistance and hypertension. Cell Metab 2007; 5 (02) 91-102
- 71 Uno K, Katagiri H, Yamada T. et al. Neuronal pathway from the liver modulates energy expenditure and systemic insulin sensitivity. Science 2006; 312 (5780) 1656-1659
- 72 Hackl MT, Fürnsinn C, Schuh CM. et al. Brain leptin reduces liver lipids by increasing hepatic triglyceride secretion and lowering lipogenesis. Nat Commun 2019; 10 (01) 2717
- 73 Hwang J, Lee S, Okada J. et al. Liver-innervating vagal sensory neurons are indispensable for the development of hepatic steatosis and anxiety-like behavior in diet-induced obese mice. Nat Commun 2025; 16 (01) 991
- 74 Bruinstroop E, Pei L, Ackermans MT. et al. Hypothalamic neuropeptide Y (NPY) controls hepatic VLDL-triglyceride secretion in rats via the sympathetic nervous system. Diabetes 2012; 61 (05) 1043-1050
- 75 Horn CC, Friedman MI. Separation of hepatic and gastrointestinal signals from the common “hepatic” branch of the vagus. Am J Physiol Regul Integr Comp Physiol 2004; 287 (01) R120-R126
- 76 Nakabayashi H. Neural monitoring system for circulating somatostatin in the hepatoportal area. Nutrition 1997; 13 (03) 225-229
- 77 Shiraishi T, Sasaki K, Niijima A, Oomura Y. Leptin effects on feeding-related hypothalamic and peripheral neuronal activities in normal and obese rats. Nutrition 1999; 15 (7–8): 576-579
- 78 Balemba OB, Salter MJ, Mawe GM. Innervation of the extrahepatic biliary tract. Anat Rec A Discov Mol Cell Evol Biol 2004; 280 (01) 836-847
- 79 Beckh K, Arnold R. Regulation of bile secretion by sympathetic nerves in perfused rat liver. Am J Physiol 1991; 261 (5 Pt 1): G775-G780
- 80 Friman S, Rådberg G, Svanvik J. Adrenergic influence on bile secretion–an experimental study in the cat. Acta Physiol Scand 1990; 140 (02) 287-293
- 81 Baldwin J, Heer FW, Albo R, Peloso O, Ruby L, Silen W. Effect of vagus nerve stimulation on hepatic secretion of bile in human subject. Am J Surg 1966; 111 (01) 66-69
- 82 Alvaro D, Alpini G, Jezequel AM. et al. Role and mechanisms of action of acetylcholine in the regulation of rat cholangiocyte secretory functions. J Clin Invest 1997; 100 (06) 1349-1362
- 83 Yang J, Chen X, Wang W. et al. Role of cholinergic innervation in biliary remnants of patients with biliary atresia. Front Pediatr 2024; 11: 1278978
- 84 Niijima A. Afferent discharges from osmoreceptors in the liver of the guinea pig. Science 1969; 166 (3912) 1519-1520
- 85 Lechner SG, Markworth S, Poole K. et al. The molecular and cellular identity of peripheral osmoreceptors. Neuron 2011; 69 (02) 332-344
- 86 Morita H, Ohyama H, Hagiike M. et al. Effects of portal infusion of hypertonic solution on jejunal electrolyte transport in anesthetized dogs. Am J Physiol 1990; 259 (6 Pt 2): R1289-R1294
- 87 Morita H, Abe C. Negative feedforward control of body fluid homeostasis by hepatorenal reflex. Hypertens Res 2011; 34 (08) 895-905
- 88 Ichiki T, Wang T, Kennedy A. et al. Sensory representation and detection mechanisms of gut osmolality change. Nature 2022; 602 (7897) 468-474
- 89 Tank J, Schroeder C, Stoffels M. et al. Pressor effect of water drinking in tetraplegic patients may be a spinal reflex. Hypertension 2003; 41 (06) 1234-1239
- 90 May M, Gueler F, Barg-Hock H. et al. Liver afferents contribute to water drinking-induced sympathetic activation in human subjects: a clinical trial. PLoS One 2011; 6 (10) e25898
- 91 Mai TH, Garland EM, Diedrich A, Robertson D. Hepatic and renal mechanisms underlying the osmopressor response. Auton Neurosci 2017; 203: 58-66
- 92 Morita H, Matsuda T, Furuya F, Khanchowdhury MR, Hosomi H. Hepatorenal reflex plays an important role in natriuresis after high-NaCl food intake in conscious dogs. Circ Res 1993; 72 (03) 552-559
- 93 Bennett TD, MacAnespie CL, Rothe CF. Active hepatic capacitance responses to neural and humoral stimuli in dogs. Am J Physiol 1982; 242 (06) H1000-H1009
- 94 Dohi N, Yamaguchi M, Iwami K, Kaneko YK, Saito SY, Ishikawa T. Mouse liver blood flow is regulated by hepatic stellate cells in response to the sympathetic neurotransmitter norepinephrine. Life Sci 2024; 359: 123214
- 95 Ueno T, Bioulac-Sage P, Balabaud C, Rosenbaum J. Innervation of the sinusoidal wall: regulation of the sinusoidal diameter. Anat Rec A Discov Mol Cell Evol Biol 2004; 280 (01) 868-873
- 96 Yang K, Huang Z, Wang S. et al. The hepatic nerves regulated inflammatory effect in the process of liver injury: is nerve the key treating target for liver inflammation?. Inflammation 2023; 46 (05) 1602-1611
- 97 Alen NV. The cholinergic anti-inflammatory pathway in humans: state-of-the-art review and future directions. Neurosci Biobehav Rev 2022; 136: 104622
- 98 Pavlov VA, Tracey KJ. The cholinergic anti-inflammatory pathway. Brain Behav Immun 2005; 19 (06) 493-499
- 99 Metz CN, Pavlov VA. Vagus nerve cholinergic circuitry to the liver and the gastrointestinal tract in the neuroimmune communicatome. Am J Physiol Gastrointest Liver Physiol 2018; 315 (05) G651-G658
- 100 Borovikova LV, Ivanova S, Zhang M. et al. Vagus nerve stimulation attenuates the systemic inflammatory response to endotoxin. Nature 2000; 405 (6785) 458-462
- 101 Park J, Kang JW, Lee SM. Activation of the cholinergic anti-inflammatory pathway by nicotine attenuates hepatic ischemia/reperfusion injury via heme oxygenase-1 induction. Eur J Pharmacol 2013; 707 (1-3): 61-70
- 102 Li F, Chen Z, Pan Q. et al. The protective effect of PNU-282987, a selective α7 nicotinic acetylcholine receptor agonist, on the hepatic ischemia-reperfusion injury is associated with the inhibition of high-mobility group box 1 protein expression and nuclear factor κB activation in mice. Shock 2013; 39 (02) 197-203
- 103 Martínez-Meza S, Singh B, Nixon DF, Dopkins N, Gangcuangco LMA. The brain-liver cholinergic anti-inflammatory pathway and viral infections. Bioelectron Med 2023; 9 (01) 29
- 104 Fu S, Ni T, Zhang M. et al. Cholinergic anti-inflammatory pathway attenuates acute liver failure through inhibiting MAdCAM1/α4β7-mediated gut-derived proinflammatory lymphocytes accumulation. Cell Mol Gastroenterol Hepatol 2024; 17 (02) 199-217
- 105 Song Z, Wu J, Jiang T, He R, Wen H. The protective effect of the vagus nerve-α7nAChR-IL-22 pathway on acute liver injury. Cytokine 2025; 186: 156840
- 106 Nishio T, Taura K, Iwaisako K. et al. Hepatic vagus nerve regulates Kupffer cell activation via α7 nicotinic acetylcholine receptor in nonalcoholic steatohepatitis. J Gastroenterol 2017; 52 (08) 965-976
- 107 Elkattawy HA, Mahmoud SM, Hassan AE. et al. Vagal stimulation ameliorates non-alcoholic fatty liver disease in rats. Biomedicines 2023; 11 (12) 3255
- 108 Huan HB, Wen XD, Chen XJ. et al. Corrigendum to “Sympathetic nervous system promotes hepatocarcinogenesis by modulating inflammation through activation of alpha1-adrenergic receptors of Kupffer cells” [Brain Behav Immun 2017;59:118–134]. Brain Behav Immun 2022; 104: 222-225
- 109 D'Mello C, Swain MG. Liver-brain inflammation axis. Am J Physiol Gastrointest Liver Physiol 2011; 301 (05) G749-G761
- 110 Cabrera-Pastor A, Llansola M, Montoliu C. et al. Peripheral inflammation induces neuroinflammation that alters neurotransmission and cognitive and motor function in hepatic encephalopathy: underlying mechanisms and therapeutic implications. Acta Physiol (Oxf) 2019; 226 (02) e13270
- 111 Chen Z, Ruan J, Li D. et al. The role of intestinal bacteria and gut-brain axis in hepatic encephalopathy. Front Cell Infect Microbiol 2021; 10: 595759
- 112 D'Mello C, Swain MG. Liver-brain interactions in inflammatory liver diseases: implications for fatigue and mood disorders. Brain Behav Immun 2014; 35: 9-20
- 113 Chovatiya R, Medzhitov R. Stress, inflammation, and defense of homeostasis. Mol Cell 2014; 54 (02) 281-288
- 114 Cassiman D, Libbrecht L, Sinelli N, Desmet V, Denef C, Roskams T. The vagal nerve stimulates activation of the hepatic progenitor cell compartment via muscarinic acetylcholine receptor type 3. Am J Pathol 2002; 161 (02) 521-530
- 115 Francis H, LeSage G, DeMorrow S. et al. The alpha2-adrenergic receptor agonist UK 14,304 inhibits secretin-stimulated ductal secretion by downregulation of the cAMP system in bile duct-ligated rats. Am J Physiol Cell Physiol 2007; 293 (04) C1252-C1262
- 116 Kamimura K, Inoue R, Nagoya T. et al. Autonomic nervous system network and liver regeneration. World J Gastroenterol 2018; 24 (15) 1616-1621
- 117 Kiba T. The role of the autonomic nervous system in liver regeneration and apoptosis–recent developments. Digestion 2002; 66 (02) 79-88
- 118 Kiba T, Tanaka K, Numata K, Saito S, Sekihara H. Hepatocyte proliferation in rats after ventromedial hypothalamic lesions: immunoreactivity patterns of proliferating cell nuclear antigen (PCNA). J Gastroenterol 1998; 33 (04) 523-528
- 119 Oben JA, Roskams T, Yang S. et al. Hepatic fibrogenesis requires sympathetic neurotransmitters. Gut 2004; 53 (03) 438-445
- 120 Fausto N, Campbell JS. The role of hepatocytes and oval cells in liver regeneration and repopulation. Mech Dev 2003; 120 (01) 117-130
- 121 Zhou Y, Lin X, Jiao Y. et al. A brain-to-liver signal mediates the inhibition of liver regeneration under chronic stress in mice. Nat Commun 2024; 15 (01) 10361
- 122 Tanaka K, Ohkawa S, Nishino T, Niijima A, Inoue S. Role of the hepatic branch of the vagus nerve in liver regeneration in rats. Am J Physiol 1987; 253 (4 Pt 1): G439-G444
- 123 Ohtake M, Sakaguchi T, Yoshida K, Muto T. Hepatic branch vagotomy can suppress liver regeneration in partially hepatectomized rats. HPB Surg 1993; 6 (04) 277-286
- 124 Iwai M, Shimazu T. Alteration in sympathetic nerve activity during liver regeneration in rats after partial hepatectomy. J Auton Nerv Syst 1992; 41 (03) 209-214
- 125 Kato H, Shimazu T. Effect of autonomic denervation on DNA synthesis during liver regeneration after partial hepatectomy. Eur J Biochem 1983; 134 (03) 473-478
- 126 Wang Y, Stoess C, Holzmann G. et al. Signalling of the neuropeptide calcitonin gene-related peptide (CGRP) through RAMP1 promotes liver fibrosis via TGFβ1/Smad2 and YAP pathways. Exp Cell Res 2024; 442 (01) 114193
- 127 Hiramoto T, Chida Y, Sonoda J, Yoshihara K, Sudo N, Kubo C. The hepatic vagus nerve attenuates Fas-induced apoptosis in the mouse liver via alpha7 nicotinic acetylcholine receptor. Gastroenterology 2008; 134 (07) 2122-2131
- 128 Li Y, Xu Z, Yu Y. et al. The vagus nerve attenuates fulminant hepatitis by activating the Src kinase in Kuppfer cells. Scand J Immunol 2014; 79 (02) 105-112
- 129 Steinebrunner N, Mogler C, Vittas S. et al. Pharmacologic cholinesterase inhibition improves survival in acetaminophen-induced acute liver failure in the mouse. BMC Gastroenterol 2014; 14: 148
- 130 Picoli CC, Costa AC, Rocha BGS. et al. Sensory nerves in the spotlight of the stem cell niche. Stem Cells Transl Med 2021; 10 (03) 346-356
- 131 Chen H, Hu B, Lv X. et al. Prostaglandin E2 mediates sensory nerve regulation of bone homeostasis. Nat Commun 2019; 10 (01) 181
- 132 Laschinger M, Wang Y, Holzmann G. et al. The CGRP receptor component RAMP1 links sensory innervation with YAP activity in the regenerating liver. FASEB J 2020; 34 (06) 8125-8138
- 133 Mizutani T, Yokoyama Y, Kokuryo T, Kawai K, Miyake T, Nagino M. Calcitonin gene-related peptide regulates the early phase of liver regeneration. J Surg Res 2013; 183 (01) 138-145
- 134 Shibata S. Neural regulation of the hepatic circadian rhythm. Anat Rec A Discov Mol Cell Evol Biol 2004; 280 (01) 901-909
- 135 Cailotto C, La Fleur SE, Van Heijningen C. et al. The suprachiasmatic nucleus controls the daily variation of plasma glucose via the autonomic output to the liver: are the clock genes involved?. Eur J Neurosci 2005; 22 (10) 2531-2540
- 136 Cailotto C, van Heijningen C, van der Vliet J. et al. Daily rhythms in metabolic liver enzymes and plasma glucose require a balance in the autonomic output to the liver. Endocrinology 2008; 149 (04) 1914-1925
- 137 Tong X, Yin L. Circadian rhythms in liver physiology and liver diseases. Compr Physiol 2013; 3 (02) 917-940
- 138 Costa R, Mangini C, Domenie ED, Zarantonello L, Montagnese S. Circadian rhythms and the liver. Liver Int 2023; 43 (03) 534-545
- 139 Katagiri H. Inter-organ communication involved in metabolic regulation at the whole-body level. Inflamm Regen 2023; 43 (01) 60
- 140 Imai J, Katagiri H, Yamada T. et al. Regulation of pancreatic beta cell mass by neuronal signals from the liver. Science 2008; 322 (5905) 1250-1254
- 141 McCracken C, Raisi-Estabragh Z, Veldsman M. et al. Multi-organ imaging demonstrates the heart-brain-liver axis in UK Biobank participants. Nat Commun 2022; 13 (01) 7839
- 142 Ader R. On the development of psychoneuroimmunology. Eur J Pharmacol 2000; 405 (1-3): 167-176
- 143 Straub RH, Cutolo M. Psychoneuroimmunology-developments in stress research. Wien Med Wochenschr 2018; 168 (3–4): 76-84
- 144 McEwen BS. Protection and damage from acute and chronic stress: allostasis and allostatic overload and relevance to the pathophysiology of psychiatric disorders. Ann N Y Acad Sci 2004; 1032: 1-7
- 145 Joung JY, Cho JH, Kim YH, Choi SH, Son CG. A literature review for the mechanisms of stress-induced liver injury. Brain Behav 2019; 9 (03) e01235
- 146 Chida Y, Sudo N, Kubo C. Does stress exacerbate liver diseases?. J Gastroenterol Hepatol 2006; 21 (1 Pt 2): 202-208
- 147 Vere CC, Streba CT, Streba LM, Ionescu AG, Sima F. Psychosocial stress and liver disease status. World J Gastroenterol 2009; 15 (24) 2980-2986
- 148 Zhang S, Ma C, Wang X. et al. Impact of Chronic Psychological Stress on Nonalcoholic Fatty Liver Disease. Semantic Scholars; 2019
- 149 He X, Zhao Z, Jiang X, Sun Y. Non-selective beta-blockers and the incidence of hepatocellular carcinoma in patients with cirrhosis: a meta-analysis. Front Pharmacol 2023; 14: 1216059
- 150 Cho IY, Chang Y, Sung E. et al. Depression and increased risk of non-alcoholic fatty liver disease in individuals with obesity. Epidemiol Psychiatr Sci 2021; 30: e23
- 151 Kang D, Zhao D, Ryu S. et al. Perceived stress and non-alcoholic fatty liver disease in apparently healthy men and women. Sci Rep 2020; 10 (01) 38
- 152 Xu MY, Guo CC, Li MY. et al. Brain-gut-liver axis: chronic psychological stress promotes liver injury and fibrosis via gut in rats. Front Cell Infect Microbiol 2022; 12: 1040749
- 153 Liu B, Zhang S, Sun L. et al. Unravelling the link between psychological distress and liver disease: insights from an anxiety-like rat model and metabolomics analysis. Int J Mol Sci 2023; 24 (17) 13356
- 154 Dimitriadis K, Iliakis P, Vakka A. et al. Effects of sympathetic denervation in metabolism regulation: a novel approach for the treatment of MASLD?. Cardiol Rev 2025
- 155 Cotero V, Graf J, Miwa H. et al. Stimulation of the hepatoportal nerve plexus with focused ultrasound restores glucose homoeostasis in diabetic mice, rats and swine. Nat Biomed Eng 2022; 6 (06) 683-705
- 156 Iwai M, Kojima T, Suriawinata AA. Anatomy and function. In: Hashimoto E. ed, Diagnosis of Liver Disease. 2nd ed.. Singapore: Springer; 2019: 1-18
- 157 Ross MH, Pawlina W. Histology: A Text and Atlas, with Correlated Cell and Molecular Biology, 6th ed. Lippincott; 2011