Semin Thromb Hemost
DOI: 10.1055/a-2548-0805
Review Article

Neutrophil Extracellular Traps: At the Interface of Thrombosis and Comorbidities

Imre Varjú*
1   Department of Biochemistry, Institute of Biochemistry and Molecular Biology, Semmelweis University, Budapest, Hungary
,
Anna Tanka-Salamon*
1   Department of Biochemistry, Institute of Biochemistry and Molecular Biology, Semmelweis University, Budapest, Hungary
,
Krasimir Kolev
1   Department of Biochemistry, Institute of Biochemistry and Molecular Biology, Semmelweis University, Budapest, Hungary
› Author Affiliations
Funding This work was supported by the Hungarian National Research, Development and Innovation Office (NKFIH) (#137563), Thematic Institutional Excellence funding scheme of the Ministry of Innovation and Technology in Hungary for the Molecular Biology thematic program of Semmelweis University (TKP2021-EGA-24), Central Europe Leuven Strategic Alliance CELSA research fund (CELSA/22/024).

Abstract

Since their discovery in 2004, neutrophil extracellular traps (NETs) have been at the center of multidisciplinary attention. Although a key tool in neutrophil-mediated immunity, these filamentous, enzyme-enriched DNA–histone complexes can be detrimental to tissues and have been identified as an underlying factor in a range of pathological conditions. Building on more than 20 years of research into NETs, this review places thrombosis, the pathological formation of blood clots, in the spotlight. From this point of view, we discuss the structure and formation of NETs, as well as the interaction of their components with the hemostatic system, dissecting the pathways through which NETs exert their marked effect on formation and the dissolution of thrombi. We pay distinct attention to the latest developments in the research of a key player in NET formation, peptidyl-arginine-deiminase (PAD) enzymes: their types, sources, and potential cross-play with the hemostatic machinery. Besides these molecular details, we elaborate on the link between pathological thrombosis, NETs, and widespread conditions that represent a debilitating public health burden worldwide, such as sepsis and neoplasms. Finally, future implications on the treatment of thrombosis-related conditions will be discussed.

* These authors share first authorship and have contributed equally to the article.




Publication History

Received: 31 January 2025

Accepted: 27 February 2025

Accepted Manuscript online:
28 February 2025

Article published online:
28 March 2025

© 2025. Thieme. All rights reserved.

Thieme Medical Publishers, Inc.
333 Seventh Avenue, 18th Floor, New York, NY 10001, USA

 
  • References

  • 1 Metchnikoff E. Immunity in Infective Diseases. Cambridge: Cambridge University Press; 1905
  • 2 Ehrlich P. Methodologische Beiträge zur Physiologie und Pathologie der verschiedenen Formen der Leukocyten. Z Klin Med 1880; 1: 553-560
  • 3 Brinkmann V, Reichard U, Goosmann C. et al. Neutrophil extracellular traps kill bacteria. Science 2004; 303 (5663): 1532-1535
  • 4 Brinkmann V. Neutrophil extracellular traps in the second decade. J Innate Immun 2018; 10 (5-6): 414-421
  • 5 Nauseef WM, Kubes P. Pondering neutrophil extracellular traps with healthy skepticism. Cell Microbiol 2016; 18 (10) 1349-1357
  • 6 Darrah E, Andrade F. NETs: the missing link between cell death and systemic autoimmune diseases?. Front Immunol 2013; 3: 428
  • 7 Pilsczek FH, Salina D, Poon KK. et al. A novel mechanism of rapid nuclear neutrophil extracellular trap formation in response to Staphylococcus aureus. J Immunol 2010; 185 (12) 7413-7425
  • 8 Yousefi S, Mihalache C, Kozlowski E, Schmid I, Simon HU. Viable neutrophils release mitochondrial DNA to form neutrophil extracellular traps. Cell Death Differ 2009; 16 (11) 1438-1444
  • 9 Brinkmann V, Zychlinsky A. Beneficial suicide: why neutrophils die to make NETs. Nat Rev Microbiol 2007; 5 (08) 577-582
  • 10 Krautgartner WD, Klappacher M, Hannig M. et al. Fibrin mimics neutrophil extracellular traps in SEM. Ultrastruct Pathol 2010; 34 (04) 226-231
  • 11 Cooper PR, Palmer LJ, Chapple IL. Neutrophil extracellular traps as a new paradigm in innate immunity: friend or foe?. Periodontol 2000 2013; 63 (01) 165-197
  • 12 Menegazzi R, Decleva E, Dri P. Killing by neutrophil extracellular traps: fact or folklore?. Blood 2012; 119 (05) 1214-1216
  • 13 Darrah E, Andrade F. Rheumatoid arthritis and citrullination. Curr Opin Rheumatol 2018; 30 (01) 72-78
  • 14 Wang Y, Li M, Stadler S. et al. Histone hypercitrullination mediates chromatin decondensation and neutrophil extracellular trap formation. J Cell Biol 2009; 184 (02) 205-213
  • 15 Christophorou MA, Castelo-Branco G, Halley-Stott RP. et al. Citrullination regulates pluripotency and histone H1 binding to chromatin. Nature 2014; 507 (7490): 104-108
  • 16 Tanikawa C, Espinosa M, Suzuki A. et al. Regulation of histone modification and chromatin structure by the p53-PADI4 pathway. Nat Commun 2012; 3: 676
  • 17 Andrade F, Darrah E, Gucek M, Cole RN, Rosen A, Zhu X. Autocitrullination of human peptidyl arginine deiminase type 4 regulates protein citrullination during cell activation. Arthritis Rheum 2010; 62 (06) 1630-1640
  • 18 Slack JL, Jones Jr LE, Bhatia MM, Thompson PR. Autodeimination of protein arginine deiminase 4 alters protein-protein interactions but not activity. Biochemistry 2011; 50 (19) 3997-4010
  • 19 Ulfig A, Leichert LI. The effects of neutrophil-generated hypochlorous acid and other hypohalous acids on host and pathogens. Cell Mol Life Sci 2021; 78 (02) 385-414
  • 20 Hallberg LAE, Thorsen NW, Hartsema EA, Hägglund PM, Hawkins CL. Mapping the modification of histones by the myeloperoxidase-derived oxidant hypochlorous acid (HOCl). Free Radic Biol Med 2022; 192: 152-164
  • 21 Sørensen OE, Borregaard N. Neutrophil extracellular traps—the dark side of neutrophils. J Clin Invest 2016; 126 (05) 1612-1620
  • 22 Tilley DO, Abuabed U, Zimny Arndt U. et al. Histone H3 clipping is a novel signature of human neutrophil extracellular traps. eLife 2022; 11: e68283
  • 23 Sollberger G, Choidas A, Burn GL. et al. Gasdermin D plays a vital role in the generation of neutrophil extracellular traps. Sci Immunol 2018; 3 (26) eaar6689
  • 24 Papayannopoulos V, Metzler KD, Hakkim A, Zychlinsky A. Neutrophil elastase and myeloperoxidase regulate the formation of neutrophil extracellular traps. J Cell Biol 2010; 191 (03) 677-691
  • 25 Fuchs TA, Abed U, Goosmann C. et al. Novel cell death program leads to neutrophil extracellular traps. J Cell Biol 2007; 176 (02) 231-241
  • 26 Hakkim A, Fuchs TA, Martinez NE. et al. Activation of the Raf-MEK-ERK pathway is required for neutrophil extracellular trap formation. Nat Chem Biol 2011; 7 (02) 75-77
  • 27 Bianchi M, Hakkim A, Brinkmann V. et al. Restoration of NET formation by gene therapy in CGD controls aspergillosis. Blood 2009; 114 (13) 2619-2622
  • 28 Neeli I, Radic M. Opposition between PKC isoforms regulates histone deimination and neutrophil extracellular chromatin release. Front Immunol 2013; 4: 38
  • 29 Romani L, Fallarino F, De Luca A. et al. Defective tryptophan catabolism underlies inflammation in mouse chronic granulomatous disease. Nature 2008; 451 (7175): 211-215
  • 30 Remijsen Q, Vandenabeele P, Willems J, Kuijpers TW. Reconstitution of protection against Aspergillus infection in chronic granulomatous disease (CGD). Blood 2009; 114 (16) 3497 , author reply 3498
  • 31 Kenne E, Nickel KF, Long AT. et al. Factor XII: a novel target for safe prevention of thrombosis and inflammation. J Intern Med 2015; 278 (06) 571-585
  • 32 Clark SR, Ma AC, Tavener SA. et al. Platelet TLR4 activates neutrophil extracellular traps to ensnare bacteria in septic blood. Nat Med 2007; 13 (04) 463-469
  • 33 Gupta AK, Joshi MB, Philippova M. et al. Activated endothelial cells induce neutrophil extracellular traps and are susceptible to NETosis-mediated cell death. FEBS Lett 2010; 584 (14) 3193-3197
  • 34 Saffarzadeh M, Juenemann C, Queisser MA. et al. Neutrophil extracellular traps directly induce epithelial and endothelial cell death: a predominant role of histones. PLoS One 2012; 7 (02) e32366
  • 35 Villanueva E, Yalavarthi S, Berthier CC. et al. Netting neutrophils induce endothelial damage, infiltrate tissues, and expose immunostimulatory molecules in systemic lupus erythematosus. J Immunol 2011; 187 (01) 538-552
  • 36 Okrent DG, Lichtenstein AK, Ganz T. Direct cytotoxicity of polymorphonuclear leukocyte granule proteins to human lung-derived cells and endothelial cells. Am Rev Respir Dis 1990; 141 (01) 179-185
  • 37 Pereira LF, Marco FM, Boimorto R. et al. Histones interact with anionic phospholipids with high avidity; its relevance for the binding of histone-antihistone immune complexes. Clin Exp Immunol 1994; 97 (02) 175-180
  • 38 Kleine TJ, Gladfelter A, Lewis PN, Lewis SA. Histone-induced damage of a mammalian epithelium: the conductive effect. Am J Physiol 1995; 268 (5 Pt 1): C1114-C1125
  • 39 Xu J, Zhang X, Pelayo R. et al. Extracellular histones are major mediators of death in sepsis. Nat Med 2009; 15 (11) 1318-1321
  • 40 Brill A, Fuchs TA, Savchenko AS. et al. Neutrophil extracellular traps promote deep vein thrombosis in mice. J Thromb Haemost 2012; 10 (01) 136-144
  • 41 Wohner N, Keresztes Z, Sótonyi P. et al. Neutrophil granulocyte-dependent proteolysis enhances platelet adhesion to the arterial wall under high-shear flow. J Thromb Haemost 2010; 8 (07) 1624-1631
  • 42 Drechsler M, Megens RT, van Zandvoort M, Weber C, Soehnlein O. Hyperlipidemia-triggered neutrophilia promotes early atherosclerosis. Circulation 2010; 122 (18) 1837-1845
  • 43 Megens RT, Vijayan S, Lievens D. et al. Presence of luminal neutrophil extracellular traps in atherosclerosis. Thromb Haemost 2012; 107 (03) 597-598
  • 44 Fuchs TA, Bhandari AA, Wagner DD. Histones induce rapid and profound thrombocytopenia in mice. Blood 2011; 118 (13) 3708-3714
  • 45 Fuchs TA, Brill A, Duerschmied D. et al. Extracellular DNA traps promote thrombosis. Proc Natl Acad Sci U S A 2010; 107 (36) 15880-15885
  • 46 Watson K, Gooderham NJ, Davies DS, Edwards RJ. Nucleosomes bind to cell surface proteoglycans. J Biol Chem 1999; 274 (31) 21707-21713
  • 47 Semeraro F, Ammollo CT, Morrissey JH. et al. Extracellular histones promote thrombin generation through platelet-dependent mechanisms: involvement of platelet TLR2 and TLR4. Blood 2011; 118 (07) 1952-1961
  • 48 Clejan L, Menahem H. Binding of deoxyribonucleic acid to the surface of human platelets. Acta Haematol 1977; 58 (02) 84-88
  • 49 Dorsch CA. Binding of single-strand DNA to human platelets. Thromb Res 1981; 24 (1-2): 119-129
  • 50 Ward CM, Tetaz TJ, Andrews RK, Berndt MC. Binding of the von Willebrand factor A1 domain to histone. Thromb Res 1997; 86 (06) 469-477
  • 51 Kleine TJ, Lewis PN, Lewis SA. Histone-induced damage of a mammalian epithelium: the role of protein and membrane structure. Am J Physiol 1997; 273 (06) C1925-C1936
  • 52 Gamberucci A, Fulceri R, Marcolongo P, Pralong WF, Benedetti A. Histones and basic polypeptides activate Ca2+/cation influx in various cell types. Biochem J 1998; 331 (Pt 2): 623-630
  • 53 Crittenden JR, Bergmeier W, Zhang Y. et al. CalDAG-GEFI integrates signaling for platelet aggregation and thrombus formation. Nat Med 2004; 10 (09) 982-986
  • 54 Carestia A, Rivadeneyra L, Romaniuk MA, Fondevila C, Negrotto S, Schattner M. Functional responses and molecular mechanisms involved in histone-mediated platelet activation. Thromb Haemost 2013; 110 (05) 1035-1045
  • 55 Andrews DA, Low PS. Role of red blood cells in thrombosis. Curr Opin Hematol 1999; 6 (02) 76-82
  • 56 Wohner N, Sótonyi P, Machovich R. et al. Lytic resistance of fibrin containing red blood cells. Arterioscler Thromb Vasc Biol 2011; 31 (10) 2306-2313
  • 57 Raska A, Kálmán K, Egri B. et al. Synergism of red blood cells and tranexamic acid in the inhibition of fibrinolysis. J Thromb Haemost 2024; 22 (03) 794-804
  • 58 Laktionov PP, Tamkovich SN, Rykova EY. et al. Cell-surface-bound nucleic acids: free and cell-surface-bound nucleic acids in blood of healthy donors and breast cancer patients. Ann N Y Acad Sci 2004; 1022: 221-227
  • 59 Goel MS, Diamond SL. Adhesion of normal erythrocytes at depressed venous shear rates to activated neutrophils, activated platelets, and fibrin polymerized from plasma. Blood 2002; 100 (10) 3797-3803
  • 60 Goel MS, Diamond SL. Neutrophil cathepsin G promotes prothrombinase and fibrin formation under flow conditions by activating fibrinogen-adherent platelets. J Biol Chem 2003; 278 (11) 9458-9463
  • 61 LaRosa CA, Rohrer MJ, Benoit SE, Rodino LJ, Barnard MR, Michelson AD. Human neutrophil cathepsin G is a potent platelet activator. J Vasc Surg 1994; 19 (02) 306-318 , discussion 318–319
  • 62 Renesto P, Chignard M. Enhancement of cathepsin G-induced platelet activation by leukocyte elastase: consequence for the neutrophil-mediated platelet activation. Blood 1993; 82 (01) 139-144
  • 63 Allen DH, Tracy PB. Human coagulation factor V is activated to the functional cofactor by elastase and cathepsin G expressed at the monocyte surface. J Biol Chem 1995; 270 (03) 1408-1415
  • 64 Gale AJ, Rozenshteyn D. Cathepsin G, a leukocyte protease, activates coagulation factor VIII. Thromb Haemost 2008; 99 (01) 44-51
  • 65 Plescia J, Altieri DC. Activation of Mac-1 (CD11b/CD18)-bound factor X by released cathepsin G defines an alternative pathway of leucocyte initiation of coagulation. Biochem J 1996; 319 (Pt 3): 873-879
  • 66 Petersen LC, Bjørn SE, Nordfang O. Effect of leukocyte proteinases on tissue factor pathway inhibitor. Thromb Haemost 1992; 67 (05) 537-541
  • 67 Belaaouaj AA, Li A, Wun TC, Welgus HG, Shapiro SD. Matrix metalloproteinases cleave tissue factor pathway inhibitor. Effects on coagulation. J Biol Chem 2000; 275 (35) 27123-27128
  • 68 Massberg S, Grahl L, von Bruehl ML. et al. Reciprocal coupling of coagulation and innate immunity via neutrophil serine proteases. Nat Med 2010; 16 (08) 887-896
  • 69 Glaser CB, Morser J, Clarke JH. et al. Oxidation of a specific methionine in thrombomodulin by activated neutrophil products blocks cofactor activity. A potential rapid mechanism for modulation of coagulation. J Clin Invest 1992; 90 (06) 2565-2573
  • 70 Ammollo CT, Semeraro F, Xu J, Esmon NL, Esmon CT. Extracellular histones increase plasma thrombin generation by impairing thrombomodulin-dependent protein C activation. J Thromb Haemost 2011; 9 (09) 1795-1803
  • 71 Kannemeier C, Shibamiya A, Nakazawa F. et al. Extracellular RNA constitutes a natural procoagulant cofactor in blood coagulation. Proc Natl Acad Sci U S A 2007; 104 (15) 6388-6393
  • 72 Müller F, Mutch NJ, Schenk WA. et al. Platelet polyphosphates are proinflammatory and procoagulant mediators in vivo. Cell 2009; 139 (06) 1143-1156
  • 73 von Brühl ML, Stark K, Steinhart A. et al. Monocytes, neutrophils, and platelets cooperate to initiate and propagate venous thrombosis in mice in vivo. J Exp Med 2012; 209 (04) 819-835
  • 74 Kambas K, Mitroulis I, Apostolidou E. et al. Autophagy mediates the delivery of thrombogenic tissue factor to neutrophil extracellular traps in human sepsis. PLoS One 2012; 7 (09) e45427
  • 75 Reinhardt C, von Brühl ML, Manukyan D. et al. Protein disulfide isomerase acts as an injury response signal that enhances fibrin generation via tissue factor activation. J Clin Invest 2008; 118 (03) 1110-1122
  • 76 Longstaff C, Varjú I, Sótonyi P. et al. Mechanical stability and fibrinolytic resistance of clots containing fibrin, DNA, and histones. J Biol Chem 2013; 288 (10) 6946-6956
  • 77 Plow EF. The major fibrinolytic proteases of human leukocytes. Biochim Biophys Acta 1980; 630 (01) 47-56
  • 78 Kolev K, Machovich R. Molecular and cellular modulation of fibrinolysis. Thromb Haemost 2003; 89 (04) 610-621
  • 79 Zeng B, Bruce D, Kril J, Ploplis V, Freedman B, Brieger D. Influence of plasminogen deficiency on the contribution of polymorphonuclear leucocytes to fibrin/ogenolysis: studies in plasminogen knock-out mice. Thromb Haemost 2002; 88 (05) 805-810
  • 80 Kolev K, Tenekedjiev K, Komorowicz E, Machovich R. Functional evaluation of the structural features of proteases and their substrate in fibrin surface degradation. J Biol Chem 1997; 272 (21) 13666-13675
  • 81 Das R, Burke T, Plow EF. Histone H2B as a functionally important plasminogen receptor on macrophages. Blood 2007; 110 (10) 3763-3772
  • 82 Petri A, Kim HJ, Xu Y. et al. Crystal structure and substrate-induced activation of ADAMTS13. Nat Commun 2019; 10 (01) 3781
  • 83 Napirei M, Ludwig S, Mezrhab J, Klöckl T, Mannherz HG. Murine serum nucleases—contrasting effects of plasmin and heparin on the activities of DNase1 and DNase1-like 3 (DNase1l3). FEBS J 2009; 276 (04) 1059-1073
  • 84 Napirei M, Wulf S, Mannherz HG. Chromatin breakdown during necrosis by serum Dnase1 and the plasminogen system. Arthritis Rheum 2004; 50 (06) 1873-1883
  • 85 Harvima RJ, Yabe K, Fräki JE, Fukuyama K, Epstein WL. Hydrolysis of histones by proteinases. Biochem J 1988; 250 (03) 859-864
  • 86 Chen J, Fu X, Wang Y. et al. Oxidative modification of von Willebrand factor by neutrophil oxidants inhibits its cleavage by ADAMTS13. Blood 2010; 115 (03) 706-712
  • 87 Wang Y, Chen J, Ling M, López JA, Chung DW, Fu X. Hypochlorous acid generated by neutrophils inactivates ADAMTS13: an oxidative mechanism for regulating ADAMTS13 proteolytic activity during inflammation. J Biol Chem 2015; 290 (03) 1422-1431
  • 88 Pillai VG, Bao J, Zander CB. et al. Human neutrophil peptides inhibit cleavage of von Willebrand factor by ADAMTS13: a potential link of inflammation to TTP. Blood 2016; 128 (01) 110-119
  • 89 Sorvillo N, Mizurini DM, Coxon C. et al. Plasma peptidylarginine deiminase IV promotes VWF-platelet string formation and accelerates thrombosis after vessel injury. Circ Res 2019; 125 (05) 507-519
  • 90 Nakayama-Hamada M, Suzuki A, Kubota K. et al. Comparison of enzymatic properties between hPADI2 and hPADI4. Biochem Biophys Res Commun 2005; 327 (01) 192-200
  • 91 Zhou Y, Chen B, Mittereder N. et al. Spontaneous secretion of the citrullination enzyme PAD2 and cell surface exposure of PAD4 by neutrophils. Front Immunol 2017; 8: 1200
  • 92 de Bont CM, Boelens WC, Pruijn GJM. NETosis, complement, and coagulation: a triangular relationship. Cell Mol Immunol 2019; 16 (01) 19-27
  • 93 Chang HH, Dwivedi N, Nicholas AP, Ho IC. The W620 polymorphism in PTPN22 disrupts its interaction with peptidylarginine deiminase type 4 and enhances citrullination and NETosis. Arthritis Rheumatol 2015; 67 (09) 2323-2334
  • 94 Tilvawala R, Nguyen SH, Maurais AJ. et al. The rheumatoid srthritis-associated citrullinome. Cell Chem Biol 2018; 25 (06) 691-704.e6
  • 95 Martin M, Nilsson SC, Eikrem D. et al. Citrullination of C1-inhibitor as a mechanism of impaired complement regulation in rheumatoid arthritis. Front Immunol 2023; 14: 1203506
  • 96 Duan Z, Zhang J, Chen X. et al. Role of LL-37 in thrombotic complications in patients with COVID-19. Cell Mol Life Sci 2022; 79 (06) 309
  • 97 Kilsgård O, Andersson P, Malmsten M. et al. Peptidylarginine deiminases present in the airways during tobacco smoking and inflammation can citrullinate the host defense peptide LL-37, resulting in altered activities. Am J Respir Cell Mol Biol 2012; 46 (02) 240-248
  • 98 Chang X, Yamada R, Sawada T, Suzuki A, Kochi Y, Yamamoto K. The inhibition of antithrombin by peptidylarginine deiminase 4 may contribute to pathogenesis of rheumatoid arthritis. Rheumatology (Oxford) 2005; 44 (03) 293-298
  • 99 Thomassen MCLGD, Bouwens BRC, Wichapong K. et al. Protein arginine deiminase 4 inactivates tissue factor pathway inhibitor-alpha by enzymatic modification of functional arginine residues. J Thromb Haemost 2023; 21 (05) 1214-1226
  • 100 Henschen A. On the structure of functional sites in fibrinogen. Thromb Res 1983; 29 (Suppl. 05) 27-39
  • 101 Masson-Bessière C, Sebbag M, Girbal-Neuhauser E. et al. The major synovial targets of the rheumatoid arthritis-specific antifilaggrin autoantibodies are deiminated forms of the alpha- and beta-chains of fibrin. J Immunol 2001; 166 (06) 4177-4184
  • 102 Sharma M, Damgaard D, Senolt L. et al. Expanding the citrullinome of synovial fibrinogen from rheumatoid arthritis patients. J Proteomics 2019; 208: 103484
  • 103 Varjú I, Sorvillo N, Cherpokova D. et al. Citrullinated fibrinogen renders clots mechanically less stable, but lysis-resistant. Circ Res 2021; 129 (02) 342-344
  • 104 Nakayama-Hamada M, Suzuki A, Furukawa H, Yamada R, Yamamoto K. Citrullinated fibrinogen inhibits thrombin-catalysed fibrin polymerization. J Biochem 2008; 144 (03) 393-398
  • 105 Varjú I, Tóth E, Farkas ÁZ. et al. Citrullinated fibrinogen forms densely packed clots with decreased permeability. J Thromb Haemost 2022; 20 (12) 2862-2872
  • 106 Ryan EA, Mockros LF, Weisel JW, Lorand L. Structural origins of fibrin clot rheology. Biophys J 1999; 77 (05) 2813-2826
  • 107 Domingues MM, Macrae FL, Duval C. et al. Thrombin and fibrinogen γ′ impact clot structure by marked effects on intrafibrillar structure and protofibril packing. Blood 2016; 127 (04) 487-495
  • 108 Weisel JW, Litvinov RI. The biochemical and physical process of fibrinolysis and effects of clot structure and stability on the lysis rate. Cardiovasc Hematol Agents Med Chem 2008; 6 (03) 161-180
  • 109 Tilvawala R, Nemmara VV, Reyes AC. et al. The role of SERPIN citrullination in thrombosis. Cell Chem Biol 2021; 28 (12) 1728-1739.e5
  • 110 Casiano-Colón A, Marquis RE. Role of the arginine deiminase system in protecting oral bacteria and an enzymatic basis for acid tolerance. Appl Environ Microbiol 1988; 54 (06) 1318-1324
  • 111 Marquis RE, Bender GR, Murray DR, Wong A. Arginine deiminase system and bacterial adaptation to acid environments. Appl Environ Microbiol 1987; 53 (01) 198-200
  • 112 Stobernack T, du Teil Espina M, Mulder LM. et al. A secreted bacterial peptidylarginine deiminase can neutralize human innate immune defenses. MBio 2018; 9 (05) e01704-e01718
  • 113 Bielecka E, Scavenius C, Kantyka T. et al. Peptidyl arginine deiminase from Porphyromonas gingivalis abolishes anaphylatoxin C5a activity. J Biol Chem 2014; 289 (47) 32481-32487
  • 114 Varjú I, Kolev K. Networks that stop the flow: a fresh look at fibrin and neutrophil extracellular traps. Thromb Res 2019; 182: 1-11
  • 115 Konig MF, Andrade F. A critical reappraisal of neutrophil extracellular traps and NETosis mimics based on differential requirements for protein citrullination. Front Immunol 2016; 7: 461
  • 116 Li P, Li M, Lindberg MR, Kennett MJ, Xiong N, Wang Y. PAD4 is essential for antibacterial innate immunity mediated by neutrophil extracellular traps. J Exp Med 2010; 207 (09) 1853-1862
  • 117 Hisada Y, Mackman N. Mechanisms of cancer-associated thrombosis. Res Pract Thromb Haemost 2023; 7 (03) 100123
  • 118 Reddel CJ, Tan CW, Chen VM. Thrombin generation and cancer: contributors and consequences. Cancers (Basel) 2019; 11 (01) 100
  • 119 Bharadwaj AG, Holloway RW, Miller VA, Waisman DM. Plasmin and plasminogen system in the tumor microenvironment: implications for cancer diagnosis, prognosis, and therapy. Cancers (Basel) 2021; 13 (08) 1838
  • 120 Timp JF, Braekkan SK, Versteeg HH, Cannegieter SC. Epidemiology of cancer-associated venous thrombosis. Blood 2013; 122 (10) 1712-1723
  • 121 Sundbøll J, Veres K, Horváth-Puhó E, Adelborg K, Sørensen HT. Risk and prognosis of cancer after lower limb arterial thrombosis. Circulation 2018; 138 (07) 669-677
  • 122 Leader A, Dagan N, Barda N. et al. Previously undiagnosed cancer in patients with arterial thrombotic events—a population-based cohort study. J Thromb Haemost 2022; 20 (03) 635-647
  • 123 Park J, Wysocki RW, Amoozgar Z. et al. Cancer cells induce metastasis-supporting neutrophil extracellular DNA traps. Sci Transl Med 2016; 8 (361) 361ra138
  • 124 Albrengues J, Shields MA, Ng D. et al. Neutrophil extracellular traps produced during inflammation awaken dormant cancer cells in mice. Science 2018; 361 (6409): eaao4227
  • 125 Abdol Razak N, Elaskalani O, Metharom P. Pancreatic cancer-induced neutrophil extracellular traps: a potential contributor to cancer-associated thrombosis. Int J Mol Sci 2017; 18 (03) 487
  • 126 Teijeira Á, Garasa S, Gato M. et al. CXCR1 and CXCR2 chemokine receptor agonists produced by tumors induce neutrophil extracellular traps that interfere with immune cytotoxicity. Immunity 2020; 52 (05) 856-871.e8
  • 127 Fridlender ZG, Sun J, Kim S. et al. Polarization of tumor-associated neutrophil phenotype by TGF-beta: “N1” versus “N2” TAN. Cancer Cell 2009; 16 (03) 183-194
  • 128 Wu L, Saxena S, Singh RK. Neutrophils in the tumor microenvironment. Adv Exp Med Biol 2020; 1224: 1-20
  • 129 Nishizawa M, Tsuchiya M, Watanabe-Fukunaga R, Nagata S. Multiple elements in the promoter of granulocyte colony-stimulating factor gene regulate its constitutive expression in human carcinoma cells. J Biol Chem 1990; 265 (10) 5897-5902
  • 130 Demers M, Krause DS, Schatzberg D. et al. Cancers predispose neutrophils to release extracellular DNA traps that contribute to cancer-associated thrombosis. Proc Natl Acad Sci U S A 2012; 109 (32) 13076-13081
  • 131 Decker AS, Pylaeva E, Brenzel A. et al. Prognostic role of blood NETosis in the progression of head and neck cancer. Cells 2019; 8 (09) 946
  • 132 Masucci MT, Minopoli M, Del Vecchio S, Carriero MV. The emerging role of neutrophil extracellular traps (NETs) in tumor progression and metastasis. Front Immunol 2020; 11: 1749
  • 133 Thålin C, Hisada Y, Lundström S, Mackman N, Wallén H. Neutrophil extracellular traps: villains and targets in arterial, venous, and cancer-associated thrombosis. Arterioscler Thromb Vasc Biol 2019; 39 (09) 1724-1738
  • 134 Spiel AO, Bartko J, Schwameis M. et al. Increased platelet aggregation and in vivo platelet activation after granulocyte colony-stimulating factor administration. A randomised controlled trial. Thromb Haemost 2011; 105 (04) 655-662
  • 135 Hisada Y, Grover SP, Maqsood A. et al. Neutrophils and neutrophil extracellular traps enhance venous thrombosis in mice bearing human pancreatic tumors. Haematologica 2020; 105 (01) 218-225
  • 136 Yuan M, Zhu H, Xu J, Zheng Y, Cao X, Liu Q. Tumor-derived CXCL1 promotes lung cancer growth via recruitment of tumor-associated neutrophils. J Immunol Res 2016; 2016: 6530410
  • 137 Xu D, Lin Y, Shen J. et al. Overproduced bone marrow neutrophils in collagen-induced arthritis are primed for NETosis: an ignored pathological cell involving inflammatory arthritis. Cell Prolif 2020; 53 (07) e12824
  • 138 Jablonska E, Garley M, Surazynski A. et al. Neutrophil extracellular traps (NETs) formation induced by TGF-β in oral lichen planus—possible implications for the development of oral cancer. Immunobiology 2020; 225 (02) 151901
  • 139 Leal AC, Mizurini DM, Gomes T. et al. Tumor-derived exosomes induce the formation of neutrophil extracellular traps: implications for the establishment of cancer-associated thrombosis. Sci Rep 2017; 7 (01) 6438
  • 140 Gavillet M, Martinod K, Renella R. et al. Flow cytometric assay for direct quantification of neutrophil extracellular traps in blood samples. Am J Hematol 2015; 90 (12) 1155-1158
  • 141 Martins GA, Kawamura MT, Carvalho MdaG. Detection of DNA in the plasma of septic patients. Ann N Y Acad Sci 2000; 906: 134-140
  • 142 Lee KH, Cavanaugh L, Leung H. et al. Quantification of NETs-associated markers by flow cytometry and serum assays in patients with thrombosis and sepsis. Int J Lab Hematol 2018; 40 (04) 392-399
  • 143 Semeraro N, Ammollo CT, Semeraro F, Colucci M. Sepsis, thrombosis and organ dysfunction. Thromb Res 2012; 129 (03) 290-295
  • 144 McDonald B, Davis RP, Kim SJ. et al. Platelets and neutrophil extracellular traps collaborate to promote intravascular coagulation during sepsis in mice. Blood 2017; 129 (10) 1357-1367
  • 145 Cao R, Liu KX, Hu D, Qi GJ. [Value of the expression levels of complement-3a receptor 1 and neutrophil extracellular traps in predicting sepsis-induced coagulopathy]. Zhongguo Dang Dai Er Ke Za Zhi 2023; 25 (12) 1259-1264
  • 146 Mao JY, Zhang JH, Cheng W, Chen JW, Cui N. Effects of neutrophil extracellular traps in patients with septic coagulopathy and their interaction with autophagy. Front Immunol 2021; 12: 757041
  • 147 Coupland LA, Spiro C, Quah BJ. et al. Plasma dynamics of neutrophil extracellular traps and cell-free DNA in septic and nonseptic vasoplegic shock: a prospective comparative observational cohort study. Shock 2024; 62 (02) 193-200
  • 148 Su Y, Li D, Deng S, Zhu X, Liu D. Prognostic value of coagulation and fibrinolysis function indexes and NETs for sepsis patients. Am J Transl Res 2023; 15 (06) 4164-4171
  • 149 Zhu S, Yu Y, Qu M. et al. Neutrophil extracellular traps contribute to immunothrombosis formation via the STING pathway in sepsis-associated lung injury. Cell Death Discov 2023; 9 (01) 315
  • 150 Zhang H, Zhou Y, Qu M. et al. Tissue factor-enriched neutrophil extracellular traps promote immunothrombosis and disease progression in sepsis-induced lung injury. Front Cell Infect Microbiol 2021; 11: 677902
  • 151 Ngo AT, Skidmore A, Oberg J. et al. Platelet factor 4 limits neutrophil extracellular trap- and cell-free DNA-induced thrombogenicity and endothelial injury. JCI Insight 2023; 8 (22) e171054
  • 152 Wegrzyn G, Walborn A, Rondina M, Fareed J, Hoppensteadt D. Biomarkers of platelet activation and their prognostic value in patients with sepsis-associated disseminated intravascular coagulopathy. Clin Appl Thromb Hemost 2021; 27: 1076029620943300
  • 153 Gollomp K, Kim M, Johnston I. et al. Neutrophil accumulation and NET release contribute to thrombosis in HIT. JCI Insight 2018; 3 (18) e99445
  • 154 McNicol A, Israels SJ. Platelet dense granules: structure, function and implications for haemostasis. Thromb Res 1999; 95 (01) 1-18
  • 155 Sofoluwe A, Bacchetta M, Badaoui M, Kwak BR, Chanson M. ATP amplifies NADPH-dependent and -independent neutrophil extracellular trap formation. Sci Rep 2019; 9 (01) 16556
  • 156 Darbousset R, Delierneux C, Mezouar S. et al. P2 × 1 expressed on polymorphonuclear neutrophils and platelets is required for thrombosis in mice. Blood 2014; 124 (16) 2575-2585
  • 157 Carminita E, Crescence L, Brouilly N, Altié A, Panicot-Dubois L, Dubois C. DNAse-dependent, NET-independent pathway of thrombus formation in vivo. Proc Natl Acad Sci U S A 2021; 118 (28) e2100561118
  • 158 Sharma S, Hofbauer TM, Ondracek AS. et al. Neutrophil extracellular traps promote fibrous vascular occlusions in chronic thrombosis. Blood 2021; 137 (08) 1104-1116
  • 159 Aleman M, Arepally GM, Baglin T. et al. Coagulation and platelet biology at the intersection of health and disease: illustrated capsules of the 11th Symposium on Hemostasis at the University of North Carolina. Res Pract Thromb Haemost 2024; 8 (03) 102395