Flugmedizin · Tropenmedizin · Reisemedizin - FTR 2025; 32(03): 126-132
DOI: 10.1055/a-2547-3557
Raumfahrtmedizin

Simulierte Schwerelosigkeit beeinträchtigt Schlafdauer und -qualität

Simulated microgravity impairs sleep duration and quality
Luise Strauch
1   Institute of Aerospace Medicine, Department of Sleep and Human Factors Research, German Aerospace Center (DLR), Cologne, Germany
,
Melanie von der Wiesche
2   Institute of Aerospace Medicine, Study team, German Aerospace Center (DLR), Cologne, Germany
,
Alexandra Noppe
2   Institute of Aerospace Medicine, Study team, German Aerospace Center (DLR), Cologne, Germany
,
Edwin Mulder
3   Institute of Aerospace Medicine, Research relations and Development, German Aerospace Center (DLR), Cologne, Germany
,
Iris Rieger
1   Institute of Aerospace Medicine, Department of Sleep and Human Factors Research, German Aerospace Center (DLR), Cologne, Germany
,
Daniel Aeschbach
1   Institute of Aerospace Medicine, Department of Sleep and Human Factors Research, German Aerospace Center (DLR), Cologne, Germany
4   Institute of Experimental Epileptology and Cognition Research, University of Bonn Medical Center, Bonn, Germany
,
Eva-Maria Elmenhorst
1   Institute of Aerospace Medicine, Department of Sleep and Human Factors Research, German Aerospace Center (DLR), Cologne, Germany
5   Institute for Occupational, Social and Environmental Medicine, Medical Faculty, Rheinisch-Westfälische Technische Hochschule (RWTH) Aachen University, Aachen, Germany
› Institutsangaben

Zusammenfassung

Während des Aufenthalts in Schwerelosigkeit ist häufig der Schlaf der Astronaut*innen beeinträchtigt. Eine kontinuierliche Körperposition in 6°-Kopftieflage (HDT) simuliert viele physiologische Veränderungen, die in Schwerelosigkeit auftreten. 24 Proband*innen verbrachten 60 Tage in HDT. Die Polysomnografie wurde in der Baselinephase (BDC-9), in der HDT-Phase (Nächte 1, 8, 30, 58) und in der Erholungsphase (R, Nächte 1 und 12) aufgezeichnet. Im Vergleich zu BDC-9 zeigten sich kürzere Schlafdauer und Tiefschlaf (N3) in HDT sowie weniger effizienter und fragmentierterer Schlaf. Ein inverser U-förmiger Zusammenhang zwischen Schlafdauer und -qualität sowie der Zeit in HDT deuteten nicht auf adaptive Verbesserungen im Verlauf der HDT hin. In der Erholungsphase war der Schlaf weiter fragmentiert, während sich die Schlafdauer schnell erholte. Wir schlussfolgern, dass physiologische Veränderungen durch die Schwerelosigkeit selbst zu Schlafdefiziten während Weltraummissionen führen können.

Abstract

Astronauts in space often experience sleep loss. In the AGBRESA (Artificial Gravity Bed Rest) study, we examined 24 participants (mean age 33 years) during 2 months of 6° head down tilt (HDT) bed rest, which is a well-established space flight analogue. Polysomnography was recorded during baseline (BDC-9), HDT (nights 1, 8, 30, 58), and recovery (R, nights 1 and 12). Mixed ANOVAs with post-hoc stepdown-Bonferroni adjustment indicated that in comparison to BDC-9, arousals were increased, while sleep duration, N3 duration, and sleep efficiency were all decreased during HDT. Significant quadratic associations between sleep duration and quality with time into HDT did not indicate adaptive improvements during HDT. While sleep duration recovered quickly after the end of bed rest, participants still displayed protracted sleep fragmentation. We conclude that physiological changes caused by exposure to microgravity may contribute to sleep deficits experienced during real space missions.



Publikationsverlauf

Artikel online veröffentlicht:
02. Juni 2025

© 2025. Thieme. All rights reserved.

Georg Thieme Verlag KG
Oswald-Hesse-Straße 50, 70469 Stuttgart, Germany

 
  • Literatur

  • 1 Rechtschaffen A, Bergmann BM. Sleep deprivation in the rat: an update of the 1989 paper. Sleep 2002; 25: 18-24
  • 2 Shaw PJ, Tononi G, Greenspan RJ. et al. Stress response genes protect against lethal effects of sleep deprivation in Drosophila. Nature 2002; 417: 287-291
  • 3 Tononi G, Cirelli C. Sleep and the price of plasticity: from synaptic and cellular homeostasis to memory consolidation and integration. Neuron 2014; 81: 12-34
  • 4 Yoo SS, Hu PT, Gujar N. et al. A deficit in the ability to form new human memories without sleep. Nat Neurosci 2007; 10: 385-392
  • 5 Belenky G, Wesensten NJ, Thorne DR. et al. Patterns of performance degradation and restoration during sleep restriction and subsequent recovery: a sleep dose-response study. J Sleep Res 2003; 12: 1-12
  • 6 Dinges DF. An overview of sleepiness and accidents. J Sleep Res 1995; 4 S2 4-14
  • 7 Barger LK, Flynn-Evans EE, Kubey A. et al. Prevalence of sleep deficiency and use of hypnotic drugs in astronauts before, during, and after spaceflight: an observational study. Lancet Neurol 2014; 13: 904-912
  • 8 Whitmire AM, Leveton LB, Barger L. et al. Risk of performance errors due to sleep loss, circadian desynchronization, fatigue, and work overload. In: National Aeronautics and Space Administration. Human health and performance risks of space exploration missions: evidence reviewed by the NASA Human Research Program NASA SP-2009–3405. Washington, DC: 2009
  • 9 Dijk DJ, Neri DF, Wyatt JK. et al. Sleep, performance, circadian rhythms, and light-dark cycles during two space shuttle flights. Am J Physiol Regul Integr Comp Physiol 2001; 281: R1647-R1664
  • 10 Watson NF, Badr MS, Belenky G. et al. Recommended Amount of Sleep for a Healthy Adult: A Joint Consensus Statement of the American Academy of Sleep Medicine and Sleep Research Society. Sleep 2015; 38: 843-844
  • 11 Van Dongen HPA, Maislin G, Mullington JM. et al. The cumulative cost of additional wakefulness: dose-response effects on neurobehavioral functions and sleep physiology from chronic sleep restriction and total sleep deprivation. Sleep 2003; 26: 117-126
  • 12 Flynn-Evans EE, Kirkley C, Young M. et al. Changes in performance and bio-mathematical model performance predictions during 45 days of sleep restriction in a simulated space mission. Sci Rep 2020; 10: 15594
  • 13 Flynn-Evans EE, Barger LK, Kubey AA. et al. Circadian misalignment affects sleep and medication use before and during spaceflight. NPJ Microgravity 2016; 2: 15019
  • 14 Wotring VE. Medication use by US crewmembers on the International Space Station. FASEB J 2015; 29: 4417-4423
  • 15 Gundel A, Polyakov V, Zulley J. The alteration of human sleep and circadian rhythms during spaceflight. J Sleep Res 1997; 6: 1-8
  • 16 Monk TH, Buysse DJ, Billy BD. et al. Sleep and circadian rhythms in four orbiting astronauts. J Biol Rhythms 1998; 13: 188-201
  • 17 Hargens AR, Vico L. Long-duration bed rest as an analog to microgravity. J Appl Physiol (1985) 2016; 120: 891-903
  • 18 Kakurin LI, Lobachik VI, Mikhailov VM. et al. Antiorthostatic hypokinesia as a method of weightlessness simulation. Aviat Space Environ Med 1976; 47: 1083-1086
  • 19 Boschert AL, Elmenhorst D, Gauger P. et al. Sleep Is Compromised in− 12 Head Down Tilt Position. Front Physiol 2019; 10: 397
  • 20 Agnew Jr HW,, Webb WB, Williams RL. The first night effect: an EEG study of sleep. Psychophysiology 1966; 2: 263-266
  • 21 Komada Y, Inoue Y, Mizuno K. et al. Effects of acute simulated microgravity on nocturnal sleep, daytime vigilance, and psychomotor performance: comparison of horizontal and 6 head-down bed rest. Percept Mot Skills 2006; 103: 307-317
  • 22 Elliott AR, Shea SA, Dijk DJ. et al. Microgravity reduces sleep-disordered breathing in humans. Am J Respir Crit Care Med 2001; 164: 478-485
  • 23 Nday CM, Frantzidis CA, Plomariti C. et al. Human blood adenosine biomarkers and non-rapid eye movement sleep stage 3 (NREM3) cortical functional connectivity associations during a 30-day head-down-tilt bed rest analogue: Potential effectiveness of a reactive sledge jump as a countermeasure. J Sleep Res 2021; 30: e13323
  • 24 Bersenev EY, Ukraintseva YV, Kovrov GV. et al. Sleep in 21-Day Dry Immersion. Are Cardiovascular Adjustments Rapid Eye Movement Sleep-Dependent?. Front Physiol 2021; 12: 749773
  • 25 Koller DP, Kasanin V, Flynn-Evans EE. et al. Altered sleep spindles and slow waves during space shuttle missions. NPJ Microgravity 2021; 7: 48
  • 26 Jones CW, Basner M, Mollicone DJ. et al. Sleep deficiency in spaceflight is associated with degraded neurobehavioral functions and elevated stress in astronauts on six-month missions aboard the International Space Station. Sleep 2022; 45: zsac006
  • 27 Mendt S, Brauns K, Friedl-Werner A. et al. Long-Term Bed Rest Delays the Circadian Phase of Core Body Temperature. Front Physiol 2021; 12: 658707
  • 28 Gooley JJ. Treatment of circadian rhythm sleep disorders with light. Ann Acad Med Singap 2008; 37: 669-676
  • 29 Zhu L, Zee PC. Circadian rhythm sleep disorders. Neurol Clin 2012; 30: 1167-1191
  • 30 Barger LK, Sullivan JP, Vincent AS. et al. Learning to live on a Mars day: fatigue countermeasures during the Phoenix Mars Lander mission. Sleep 2012; 35: 1423-1435
  • 31 Blågestad T, Pallesen S, Grønli J. et al. How Perceived Pain Influence Sleep and Mood More Than The Reverse: A Novel, Exploratory Study with Patients Awaiting Total Hip Arthroplasty. Front Psychol 2016; 7: 1689
  • 32 Johnston SL, Campbell MR, Scheuring R. et al. Risk of herniated nucleus pulposus among U. S. astronauts. Aviat Space Environ Med 2010; 81: 566-574
  • 33 Penchev R, Scheuring RA, Soto AT. et al. Back Pain in Outer Space. Anesthesiology 2021; 135: 384-395
  • 34 Styf JR, Hutchinson K, Carlsson SG. et al. Depression, mood state, and back pain during microgravity simulated by bed rest. Psychosom Med 2001; 63: 862-864
  • 35 Strauch L, von der Wiesche M, Noppe A. et al. Simulating microgravity with 60 days of 6 degree head-down tilt bed rest compromises sleep. NPJ Microgravity 2024; 10: 109