Subscribe to RSS
DOI: 10.1055/a-2541-4942
Automated Comprehensive Analysis of Preoperative Biometric Parameters in Cataract Patients: A Retrospective Study of over 6 000 Eyes
Automatisierte Analyse der präoperativen biometrischen Parameter bei Kataraktpatienten: eine retrospektive Studie mit über 6000 Augen
Abstract
Cataract surgery is one of the most successful surgical procedures, improving vision and quality of life for millions globally. An accurate preoperative measurement is crucial for predicting outcomes, particularly in minimizing postoperative refractive errors through precise intraocular lens (IOL) selection. This study aimed to analyze preoperative biometric data in cataract patients to identify key parameters relevant for clinical decision-making. The study also sought to understand patient demographics and biometrics in a representative population. An automated retrospective analysis was conducted on the preoperative biometric data of 6 163 eyes from 3 118 patients who underwent cataract or clear lens extraction (CLE) surgery in a German clinic over the past 2 years. All measurements were taken using the IOL Master 700 (Carl Zeiss Meditec, Jena, Germany), and data were automatically transferred for analysis using a dedicated software tool. Biometric parameters assessed included axial length (AL), keratometry values (K, TK), anterior chamber depth (ACD), lens thickness (LT), and vitreous length (VL). The age and gender distribution of the cohort was also considered. The biometric data from this large patient cohort largely aligns with published norms for cataract patients. The majority of eyes exhibited ALs and corneal curvatures within expected ranges, supporting accurate IOL power calculations. The study also confirmed a high prevalence of mild astigmatism, suggesting that toric IOLs could address residual astigmatism for better visual outcomes. This studyʼs large sample size adds valuable insights into preoperative cataract patient data and shows the value of an automated analysis.
Zusammenfassung
Die Kataraktoperation ist einer der erfolgreichsten chirurgischen Eingriffe, der das Sehvermögen und die Lebensqualität von Millionen Menschen auf der ganzen Welt verbessert. Eine genaue präoperative Messung ist entscheidend für die Vorhersage der Ergebnisse, insbesondere für die Minimierung postoperativer Brechungsfehler durch eine präzise Auswahl der Intraokularlinse (IOL). Ziel dieser Studie ist es, präoperative biometrische Daten von Kataraktpatienten zu analysieren, um Schlüsselparameter für die klinische Entscheidungsfindung zu ermitteln. Außerdem soll die Studie ein Verständnis der demografischen und biometrischen Daten der Patienten in einer repräsentativen Population ermöglichen. Es wurde eine automatisierte retrospektive Analyse der präoperativen biometrischen Daten von 6163 Augen von 3118 Patienten durchgeführt, die sich in den letzten 2 Jahren in einer deutschen Klinik einer Katarakt- oder Clear-Lens-Extraction-Operation (CLE) unterzogen. Alle Messungen wurden mit dem IOL Master 700 (Carl Zeiss Meditec) durchgeführt, und die Daten wurden automatisch zur Analyse mit einem speziellen Softwaretool übertragen. Zu den untersuchten biometrischen Parametern gehörten Achsenlänge (AL), Keratometriewerte (K, TK), Vorderkammertiefe (ACD), Linsendicke (LT) und Glaskörperlänge (VL). Auch die Alters- und Geschlechtsverteilung der Kohorte wurde berücksichtigt. Die biometrischen Daten dieser großen Patientenkohorte stimmen weitgehend mit den veröffentlichten Daten für Kataraktpatienten überein. Die Mehrheit der Augen wies Achsenlängen und Keratometriewerte innerhalb der erwarteten Bereiche auf. Die Studie bestätigte auch eine hohe Prävalenz eines leichten Astigmatismus, was durch torische IOLs ausgeglichen werden sollte, um bessere Sehergebnisse zu erzielen. Die Größe dieser Studie gibt wertvolle Einblicke in die präoperativen Daten von Kataraktpatienten und zeigt, wie nützlich eine automatische Analyse von Patientendaten sein kann.
Already known:
-
The measurements observed in this study align with previously recorded data, further validating established methodologies and findings.
-
Previous research has demonstrated the potential for digital tools to support data collection and analysis in clinical settings.
-
The potential of fully automated data extraction from clinic software to streamline the analysis of large datasets has not been fully explored until now.
Newly described:
-
This study highlights how automated extraction from clinic software can significantly aid in the efficient handling and analysis of big data.
-
The approach presented here simplifies the process of data aggregation, reducing manual effort while improving accuracy.
-
Despite these advancements, the rate of toric IOL implantation remains far too low compared to the high prevalence of astigmatism, underscoring an ongoing gap in surgical decision-making and patient care.
Publication History
Received: 15 October 2024
Accepted: 13 February 2025
Article published online:
27 March 2025
© 2025. Thieme. All rights reserved.
Georg Thieme Verlag KG
Oswald-Hesse-Straße 50, 70469 Stuttgart, Germany
-
References
- 1 Lamoureux EL, Fenwick E, Pesudovs K. et al. The impact of cataract surgery on quality of life. Curr Opin Ophthalmol 2011; 22: 19-27
- 2 Khoramnia R, Auffarth G, Łabuz G. et al. Refractive Outcomes after Cataract Surgery. Diagnostics 2022; 12: 243
- 3 Hashemi H, Pakzad R, Yekta A. et al. Global and regional prevalence of age-related cataract: a comprehensive systematic review and meta-analysis. Eye (Lond) 2020; 34: 1357-1370
- 4 Cedrone C, Culasso F, Cesareo M. et al. Prevalence and incidence of age-related cataract in a population sample from Priverno, Italy. Ophthalmic Epidemiol 1999; 6: 95-103
- 5 Schelenz J, Kammann J. Comparison of contact and immersion techniques for axial length measurement and implant power calculation. J Cataract Refract Surg 1989; 15: 425-428
- 6 Turczynowska M, Koźlik-Nowakowska K, Gaca-Wysocka M. et al. Effective ocular biometry and intraocular lens power calculation. Eur Ophthal Rev 2016; 10: 94
- 7 Fercher AF, Roth E. Ophthalmic Laser Interferometry. In: Mueller GJ, ed. Innsbruck: 1986 International Symposium, Innsbruck; 1986: 48
- 8 Retzlaff JA, Sanders DR, Kraff MC. Development of the SRK/T intraocular lens implant power calculation formula. J Cataract Refract Surg 1990; 16: 333-340
- 9 Drexler W, Findl O, Menapace R. et al. Partial coherence interferometry: a novel approach to biometry in cataract surgery. Am J Ophthalmol 1998; 126: 524-534
- 10 Klaproth O. ZEISS IOLMaster 700. In: Aramberri J, Hoffer KJ, Olsen T. et al. eds. Intraocular Lens Calculations. Cham: Springer International Publishing; 2024: 297-306
- 11 Xu J, Zhang L, Mo E. et al. The effect of corneal power on the accuracy of 14 IOL power formulas. BMC Ophthalmol 2024; 24: 126
- 12 Xu J, Li C, Wang L. et al. Influence of measurement differences of anterior chamber depth and axial length on lens thickness evaluation in cataract patients: a comparison of two tests. BMC Ophthalmol 2020; 20: 481
- 13 Fang R, Yu YF, Li EJ. et al. Global, regional, national burden and gender disparity of cataract: findings from the global burden of disease study 2019. BMC Public Health 2022; 22: 2068
- 14 Klein BEK, Klein R, Lee KE. et al. Incidence of age-related cataract over a 15-year interval the Beaver Dam Eye Study. Ophthalmology 2008; 115: 477-482
- 15 McCarty CA. Cataract in the 21st Century: lessons from previous epidemiologic research. Clin Exp Optom 2002; 85: 91-96
- 16 Fotedar R, Wang JJ, Burlutsky G. et al. Distribution of axial length and ocular biometry measured using partial coherence laser interferometry (IOL Master) in an older white population. Ophthalmology 2010; 117: 417-423
- 17 Hoffer KJ. Clinical results using the Holladay 2 intraocular lens power formula. J Cataract Refract Surg 2000; 26: 1233-1237
- 18 Williams KM, Verhoeven VJM, Cumberland P. et al. Prevalence of refractive error in Europe: the European Eye Epidemiology (E3) Consortium. Eur J Epidemiol 2015; 30: 305-315
- 19 Hoffmann PC, Hütz WW. Analysis of biometry and prevalence data for corneal astigmatism in 23,239 eyes. J Cataract Refract Surg 2010; 36: 1479-1485
- 20 ESCRS. ESCRS Clinical Trends Survey 2022 Results. https://www.escrs.org/media/5cbb4kx4/2022_escrs_clinical-survey-supplement.pdf accessed 22.02.2025
- 21 Anderson DF, Dhariwal M, Bouchet C. et al. Global prevalence and economic and humanistic burden of astigmatism in cataract patients: a systematic literature review. Clin Ophthalmol 2018; 12: 439-452