Subscribe to RSS
DOI: 10.1055/a-2537-1911
Was kann der transrektale Ultraschall 2025?
Capabilities and Advances of Transrectal Ultrasound in 2025
Zusammenfassung
Der transrektale Ultraschall, insbesondere in Kombination von Hochfrequenzultraschall und MR-TRUS-Fusionstechnologien bietet eine präzise und effektive Methode zur Korrelation und gezielten Biopsie von suspekten intraprostatischen Läsionen, welche mittels MRT detektiert wurden. Die Fortschritte in der Bildgebungstechnologie durch den Einsatz von 29-Mhz-Mikroultraschallsonden, roboterassistierter Systeme und die Integration von KI-basierten Analysen versprechen eine weitere Verbesserung der Diagnostik in der Breite und eine Reduktion unnötiger Biopsien. Technische Weiterentwicklungen und verbesserte TRUS-Ausbildung können in Zukunft zu einer dezentralen und finanzierbaren Diagnostik des Prostatakarzinoms beitragen.
Abstract
Transrectal ultrasound, particularly in the combination of high-frequency ultrasound and MR-TRUS fusion technologies, provides a highly precise and effective method for correlation and targeted biopsy of suspicious intraprostatic lesions detected by MRI. Advances in imaging technology, driven by 29 Mhz micro-ultrasound transducers, robotic-assisted systems, and the integration of AI-based analyses, promise further improvements in diagnostic accuracy and a reduction in unnecessary biopsies. Further technological advancements and improved TRUS training could contribute to a decentralized and cost-effective diagnostic evaluation of prostate cancer in the future.
Publication History
Received: 10 November 2024
Accepted after revision: 04 February 2025
Article published online:
28 May 2025
© 2025. Thieme. All rights reserved.
Georg Thieme Verlag KG
Oswald-Hesse-Straße 50, 70469 Stuttgart, Germany
-
Literatur
- 1 Metzler JM, Finger L, Burkhardt T. et al. Systematic, noninvasive endometriosis diagnosis in transvaginal sonography by the Swiss Society of Ultrasound in Medicine. Ultraschall Med 2024; 45: 367-388
- 2 Herrmann J, Kaufmann S, Zhang C. et al. Multiparametric MRI of the prostate. Urologe A 2022; 61: 428-440
- 3 Ahmed HU, El-Shater Bosaily A, Brown LC. et al. Diagnostic accuracy of multi-parametric MRI and TRUS biopsy in prostate cancer (PROMIS): a paired validating confirmatory study. Lancet 2017; 389: 815-822
- 4 Kaufmann S, Russo GI, Bamberg F. et al. Prostate cancer detection in patients with prior negative biopsy undergoing cognitive-, robotic- or in-bore MRI target biopsy. World J Urol 2018; 36: 761-768
- 5 Kasivisvanathan V, Rannikko AS, Borghi M. et al. MRI-Targeted or Standard Biopsy for Prostate-Cancer Diagnosis. N Engl J Med 2018; 378: 1767-1777
- 6 Franiel T, Asbach P, Beyersdorff D. et al. mpMRI of the Prostate (MR-Prostatography): Updated Recommendations of the DRG and BDR on Patient Preparation and Scanning Protocol. Rofo 2021; 193: 763-777
- 7 Goldenberg E, Gilbert BR. Office ultrasound for the urologist. Curr Urol Rep 2012; 13: 460-466
- 8 Xie Y, Tokas T, Grabski B. et al. Internal Fusion: exact correlation of transrectal ultrasound images of the prostate by detailed landmarks over time for targeted biopsies or follow-up. World J Urol 2018; 36: 693-698
- 9 Lee J, Yang SW, Jin L. et al. Is PSA density of the peripheral zone as a useful predictor for prostate cancer in patients with gray zone PSA levels?. BMC Cancer 2021; 21: 472
- 10 Grummet J, Gorin MA, Popert R. et al. “TREXIT 2020”: why the time to abandon transrectal prostate biopsy starts now. Prostate Cancer and Prostatic Diseases 2020; 23: 62-65
- 11 Ukimura O, Marien A, Palmer S. et al. Trans-rectal ultrasound visibility of prostate lesions identified by magnetic resonance imaging increases accuracy of image-fusion targeted biopsies. World J Urol 2015; 33: 1669-1676
- 12 Gross M, Eisenhuber E, Assinger P. et al. MRI-guided in-bore biopsy of the prostate – defining the optimal number of cores needed. Cancer Imaging 2024; 24: 81
- 13 Ghai S, Eure G, Fradet V. et al. Assessing Cancer Risk on Novel 29 MHz Micro-Ultrasound Images of the Prostate: Creation of the Micro-Ultrasound Protocol for Prostate Risk Identification. The Journal of Urology 2016; 196: 562-569
- 14 Avolio PP, Lughezzani G, Anidjar M. et al. The diagnostic accuracy of micro-ultrasound for prostate cancer diagnosis: a review. World J Urol 2023; 41: 3267-3276
- 15 Wiemer L, Hollenbach M, Heckmann R. et al. Evolution of Targeted Prostate Biopsy by Adding Micro-Ultrasound to the Magnetic Resonance Imaging Pathway. European Urology Focus 2021; 7: 1292-1299
- 16 Harland N, Russo GI, Kaufmann S. et al. Robotic Transrectal Computed Tomographic Ultrasound with Artificial Neural Network Analysis: First Validation and Comparison with MRI-Guided Biopsies and Radical Prostatectomy. Urol Int 2022; 106: 90-96
- 17 Hepp T, Kalmbach L, Kolb M. et al. T2 mapping for the characterization of prostate lesions. World J Urol 2022; 40: 1455-1461
- 18 Mischinger J, Kaufmann S, Russo GI. et al. Targeted vs systematic robot-assisted transperineal magnetic resonance imaging-transrectal ultrasonography fusion prostate biopsy. BJU Int 2018; 121: 791-798
- 19 Thaiss WM, Moser S, Hepp T. et al. Head-to-head comparison of biparametric versus multiparametric MRI of the prostate before robot-assisted transperineal fusion prostate biopsy. World J Urol 2022; 40: 2431-2438
- 20 Loch T, Leuschner I, Genberg C. et al. Artificial neural network analysis (ANNA) of prostatic transrectal ultrasound. Prostate 1999; 39: 198-204
- 21 Tokas T, Grabski B, Paul U. et al. A 12-year follow-up of ANNA/C-TRUS image-targeted biopsies in patients suspicious for prostate cancer. World J Urol 2018; 36: 699-704
- 22 Land fördert Einsatz Künstlicher Intelligenz im Gesundheitswesen. [Anonym]