Subscribe to RSS
DOI: 10.1055/a-2536-3636
Auswirkung des Mineral- und Knochenstoffwechsels auf die Progression chronischer Nierenerkrankungen
Chronic Kidney Disease – Mineral and Bone Disorder (CKD-MBD)
Zusammenfassung
Der Begriff „Chronic Kidney Disease – Mineral and Bone Disorder“ (CKD-MBD) beschreibt das komplexe Zusammenspiel des Kalzium-Phosphat-Stoffwechsels u. a. anhand von Vitamin D, Parathormon und Fibroblast-Growth-Faktor-23 (FGF-23) bei chronischer Nierenerkrankung (CKD), das insbesondere in fortgeschrittenen Stadien der CKD klinisch relevant wird und zu Knochenumbauprozessen und extraossären Verkalkungen einschließlich Gefäßverkalkung führt. Die Veränderungen gehen einher mit einem erhöhten Risiko für kardiovaskuläre Ereignisse, Osteoporose, Progress der CKD sowie erhöhter Gesamtmortalität. Regelmäßiges Screening auf das Vorliegen einer CKD-MBD und frühzeitige Therapieeinleitung sind essenziell für das Management von CKD-Patienten, vor allem in den Stadien G3–G5(d). Führende Therapieziele sind die Vermeidung einer Hyperphosphatämie und Hyperkalzämie, der Ausgleich eines Vitamin-D-Mangels sowie die adäquate Stufentherapie eines (sekundären) Hyperparathyreoidismus, um starke Anstiege des Parathormons zu vermeiden. Dazu stehen insbesondere diverse Phosphatbinder, inaktives und aktives Vitamin D, Vitamin-D-Analoga, Kalzium-Sensitizer, die operative Parathyreoidektomie sowie antiresorptive Therapieoptionen mit Bisphosphonaten oder Denosumab zur Verfügung.
Publication History
Article published online:
21 July 2025
© 2025. Thieme. All rights reserved.
Georg Thieme Verlag KG
Oswald-Hesse-Straße 50, 70469 Stuttgart, Germany
-
Literatur
- 1 Kidney Disease: Improving Global Outcomes (KDIGO) CKD-MBD Work Group. KDIGO clinical practice guideline for the diagnosis, evaluation, prevention, and treatment of Chronic Kidney Disease-Mineral and Bone Disorder (CKD-MBD). Kidney Int Suppl 2009; (113) S1-130
- 2 Kidney Disease: Improving Global Outcomes (KDIGO) CKD-MBD Update Work Group. KDIGO 2017 Clinical Practice Guideline Update for the Diagnosis, Evaluation, Prevention, and Treatment of Chronic Kidney Disease-Mineral and Bone Disorder (CKD-MBD). Kidney Int Suppl (2011) 2017; 7: 1-59
- 3 Fliser D, Kollerits B, Neyer U. et al. Fibroblast growth factor 23 (FGF23) predicts progression of chronic kidney disease: the Mild to Moderate Kidney Disease (MMKD) Study. J Am Soc Nephrol 2007; 18: 2600-2608
- 4 Mehta R, Cai X, Lee J. et al. et al. Serial Fibroblast Growth Factor 23 Measurements and Risk of Requirement for Kidney Replacement Therapy: The CRIC (Chronic Renal Insufficiency Cohort) Study. Am J Kidney Dis 2020; 75: 908-918
- 5 Isakova T, Wahl P, Vargas GS. et al. Fibroblast growth factor 23 is elevated before parathyroid hormone and phosphate in chronic kidney disease. Kidney Int 2011; 79: 1370-1378
- 6 Miyamoto K, Ito M, Kuwahata M. et al. Inhibition of intestinal sodium-dependent inorganic phosphate transport by fibroblast growth factor 23. Ther Apher Dial 2005; 9: 331-335
- 7 Murray SL, Wolf M. Calcium and Phosphate Disorders: Core Curriculum 2024. Am J Kidney Dis 2024; 83: 241-256
- 8 Centeno PP, Herberger A, Mun HC. et al. Phosphate acts directly on the calcium-sensing receptor to stimulate parathyroid hormone secretion. Nat Commun 2019; 10: 4693
- 9 David V, Martin A, Isakova T. et al. Inflammation and functional iron deficiency regulate fibroblast growth factor 23 production. Kidney Int 2016; 89: 135-146
- 10 Shimada T, Hasegawa H, Yamazaki Y. et al. FGF-23 is a potent regulator of vitamin D metabolism and phosphate homeostasis. J Bone Miner Res 2004; 19: 429-435
- 11 Goltzman D, Mannstadt M, Marcocci C. Physiology of the Calcium-Parathyroid Hormone-Vitamin D Axis. Front Horm Res 2018; 50: 1-13
- 12 de Borst MH, Vervloet MG, ter Wee PM. et al. Cross talk between the renin-angiotensin-aldosterone system and vitamin D-FGF-23-klotho in chronic kidney disease. J Am Soc Nephrol 2011; 22: 1603-1609
- 13 Wolf G, Stahl RA. Remembrance of things past: tumoural calcifications in a haemodialysis patient. Nephrol Dial Transplant 2002; 17: 304-307
- 14 Fukagawa M, Kazama JJ. The making of a bone in blood vessels: from the soft shell to the hard bone. Kidney Int 2007; 72: 533-534
- 15 Nitta K. Vascular calcification in patients with chronic kidney disease. Ther Apher Dial 2011; 15: 513-521
- 16 Grabner A, Amaral AP, Schramm K. et al. Activation of Cardiac Fibroblast Growth Factor Receptor 4 Causes Left Ventricular Hypertrophy. Cell Metab 2015; 22: 1020-1032
- 17 Yang H, Luo H, Tang X. et al. Prognostic value of FGF23 among patients with end-stage renal disease: a systematic review and meta-analysis. Biomark Med 2016; 10: 547-556
- 18 Sprague SM, Bellorin-Font E, Jorgetti V. et al. Diagnostic Accuracy of Bone Turnover Markers and Bone Histology in Patients With CKD Treated by Dialysis. Am J Kidney Dis 2016; 67: 559-566
- 19 Drechsler C, Verduijn M, Pilz S. et al. Bone alkaline phosphatase and mortality in dialysis patients. Clin J Am Soc Nephrol 2011; 6: 1752-1759
- 20 DVO Dachverband Osteologie e. V.. S3-Leitlinie Prophylaxe, Diagnostik und Therapie der Osteoporose bei postmenopausalen Frauen und bei Männern ab dem 50. Lebensjahr. Stand: 2023. AWMF-Register-Nr.: 183/001. Im Internet: Accessed April 16, 2025 at: https://register.awmf.org/de/leitlinien/detail/183–001
- 21 Malluche HH, Porter DS, Monier-Faugere MC. et al. Differences in bone quality in low- and high-turnover renal osteodystrophy. J Am Soc Nephrol 2012; 23: 525-532
- 22 Gallo Marin B, Aghagoli G, Hu SL. et al. Calciphylaxis and Kidney Disease: A Review. Am J Kidney Dis 2023; 81: 232-239
- 23 Lopes MB, Karaboyas A, Bieber B. et al. Impact of longer term phosphorus control on cardiovascular mortality in hemodialysis patients using an area under the curve approach: results from the DOPPS. Nephrol Dial Transplant 2020; 35: 1794-1801
- 24 Dhingra R, Sullivan LM, Fox CS. et al. Relations of serum phosphorus and calcium levels to the incidence of cardiovascular disease in the community. Arch Intern Med 2007; 167: 879-885
- 25 Bellasi A, Mandreoli M, Baldrati L. et al. Chronic kidney disease progression and outcome according to serum phosphorus in mild-to-moderate kidney dysfunction. Clin J Am Soc Nephrol 2011; 6: 883-891
- 26 Cannata-Andía JB, Fernández-Martín JL, Locatelli F. et al. Use of phosphate-binding agents is associated with a lower risk of mortality. Kidney Int 2013; 84: 998-1008
- 27 Noori N, Kalantar-Zadeh K, Kovesdy CP. et al. Association of dietary phosphorus intake and phosphorus to protein ratio with mortality in hemodialysis patients. Clin J Am Soc Nephrol 2010; 5: 683-692
- 28 Block GA, Raggi P, Bellasi A. et al. Mortality effect of coronary calcification and phosphate binder choice in incident hemodialysis patients. Kidney Int 2007; 71: 438-441
- 29 Malluche HH, Mawad H, Monier-Faugere MC. Effects of treatment of renal osteodystrophy on bone histology. Clin J Am Soc Nephrol 2008; 3 (Suppl. 3) S157-163
- 30 Ogata H, Fukagawa M, Hirakata H. et al. Effect of Treating Hyperphosphatemia With Lanthanum Carbonate vs Calcium Carbonate on Cardiovascular Events in Patients With Chronic Kidney Disease Undergoing Hemodialysis: The LANDMARK Randomized Clinical Trial. JAMA 2021; 325: 1946-1954
- 31 Werner C, Ritter C, Busch M. Radiopaque Coproliths in the Pelvis Minor. Dtsch Arztebl Int 2020; 117: 388
- 32 Sinsakul M, Sika M, Koury M. et al. The safety and tolerability of ferric citrate as a phosphate binder in dialysis patients. Nephron Clin Pract 2012; 121: c25-29
- 33 Gutekunst L. An Update on Phosphate Binders: A Dietitian’s Perspective. J Ren Nutr 2016; 26: 209-218
- 34 Silva AL, Chertow GM, Hernandez GT. et al. Tenapanor Improves Long-Term Control of Hyperphosphatemia in Patients Receiving Maintenance Dialysis: the NORMALIZE Study. Kidney360 2023; 4: 1580-1589
- 35 Floege J, Kim J, Ireland E. et al. et al. Serum iPTH, calcium and phosphate, and the risk of mortality in a European haemodialysis population. Nephrol Dial Transplant 2011; 26: 1948-1955
- 36 Magagnoli L, Cozzolino M, Caskey FJ. et al. Association between CKD-MBD and mortality in older patients with advanced CKD-results from the EQUAL study. Nephrol Dial Transplant 2023; 38: 2562-2575
- 37 Alexander RT. Increased intestinal phosphate absorption, an often-overlooked effect of vitamin D. J Physiol 2021; 599: 1021-1022
- 38 Reichel H. Low-dose alfacalcidol controls secondary hyperparathyroidism in predialysis chronic kidney disease. Nephron Clin Pract 2010; 114 c268–76
- 39 Teng M, Wolf M, Lowrie E. et al. Survival of patients undergoing hemodialysis with paricalcitol or calcitriol therapy. N Engl J Med 2003; 349: 446-456
- 40 Wang AY, Fang F, Chan J. et al. Effect of paricalcitol on left ventricular mass and function in CKD--the OPERA trial. J Am Soc Nephrol 2014; 25: 175-186
- 41 Chonchol M, Locatelli F, Abboud HE. et al. A randomized, double-blind, placebo-controlled study to assess the efficacy and safety of cinacalcet HCl in participants with CKD not receiving dialysis. Am J Kidney Dis 2009; 53: 197-207
- 42 Parfrey PS, Drüeke TB, Block GA. et al. The Effects of Cinacalcet in Older and Younger Patients on Hemodialysis: The Evaluation of Cinacalcet HCl Therapy to Lower Cardiovascular Events (EVOLVE) Trial. Clin J Am Soc Nephrol 2015; 10: 791-799
- 43 EVOLVE Trial Investigators. Chertow GM, Block GA, Correa-Rotter R. et al. Effect of cinacalcet on cardiovascular disease in patients undergoing dialysis. N Engl J Med 2012; 367: 2482-2494
- 44 Block GA, Bushinsky DA, Cheng S. et al. Effect of Etelcalcetide vs Cinacalcet on Serum Parathyroid Hormone in Patients Receiving Hemodialysis With Secondary Hyperparathyroidism: A Randomized Clinical Trial. JAMA 2017; 317: 156-164
- 45 Shigematsu T, Koiwa F, Isaka Y. et al. Efficacy and Safety of Upacicalcet in Hemodialysis Patients with Secondary Hyperparathyroidism: A Randomized Placebo-Controlled Trial. Clin J Am Soc Nephrol 2023; 18: 1300-1309
- 46 Cozzolino M, Ketteler M, Martin KJ. et al. Paricalcitol- or cinacalcet-centred therapy affects markers of bone mineral disease in patients with secondary hyperparathyroidism receiving haemodialysis: results of the IMPACT-SHPT study. Nephrol Dial Transplant 2014; 29: 899-905
- 47 Ketteler M, Martin KJ, Wolf M. et al. Paricalcitol versus cinacalcet plus low-dose vitamin D therapy for the treatment of secondary hyperparathyroidism in patients receiving haemodialysis: results of the IMPACT SHPT study. Nephrol Dial Transplant 2012; 27: 3270-3278
- 48 Sprague SM, Crawford PW, Melnick JZ. et al. Use of Extended-Release Calcifediol to Treat Secondary Hyperparathyroidism in Stages 3 and 4 Chronic Kidney Disease. Am J Nephrol 2016; 44: 316-325
- 49 Lau WL, Obi Y, Kalantar-Zadeh K. Parathyroidectomy in the Management of Secondary Hyperparathyroidism. Clin J Am Soc Nephrol 2018; 13: 952-961
- 50 Cosman F, Crittenden DB, Adachi JD. et al. Romosozumab Treatment in Postmenopausal Women with Osteoporosis. N Engl J Med 2016; 375: 1532-1543
- 51 Lv F, Cai X, Yang W. et al. Denosumab or romosozumab therapy and risk of cardiovascular events in patients with primary osteoporosis: Systematic review and meta- analysis. Bone 2020; 130: 115121
- 52 Sato M, Inaba M, Yamada S. et al. Efficacy of romosozumab in patients with osteoporosis on maintenance hemodialysis in Japan; an observational study. J Bone Miner Metab 11/2021; 39: 1082-1090