Subscribe to RSS
DOI: 10.1055/a-2523-6010
Wie viele MRT-Sequenzen der Prostata werden benötigt?
How many MRI sequences are required for prostate cancer detection?
Zusammenfassung
Die multiparametrische Magnetresonanztomografie (mpMRT) ist die etablierte Bildgebungsmodalität der Prostata. Multiparametrisch bedeutet in diesem Zusammenhang, dass neben den anatomischen (T1- und T2-gewichtet) noch funktionelle (diffusionsgewichtet) und kontrastmittelverstärkte Sequenzen enthalten sind. Die anatomischen Sequenzen ermöglichen eine hohe Ortsauflösung. Die diffusionsgewichteten Sequenzen (Diffusion-Weighted Imaging, DWI) misst die Bewegung von Wassermolekülen im Gewebe (Brown’sche Molekularbewegung) und trifft somit Aussagen über die Gewebezusammensetzung. Die Kontrastmittelsequenz (Dynamic Contrast-Enhanced, DCE) nutzt hingegen die Gewebeperfusion zur Beurteilung einer möglichen Tumorangiogenese. Durch diese Kombination werden mit verschiedenen Sequenzen unterschiedliche Aspekte des Prostatagewebes analysiert. Diese Kombination an Sequenzen hat sich gegenüber den initialen MRT-Untersuchungen in den 1980er als zunächst reine T1-/T2-Untersuchung der Prostata durchgesetzt. Aufgrund des großen Bedarfs an Prostata-MRT stellt sich zunehmend die Frage, ob aus ökonomischen und versorgungstechnischen Gründen auf eine Sequenz im Rahmen der Untersuchung verzichten werden kann und, falls ja, auf welche.
Abstract
Multiparametric magnetic resonance imaging (mpMRI) is an established imaging modality for prostate cancer. In this context, “multiparametric” refers to the combination of anatomical sequences (T1- and T2-weighted) with functional (diffusion-weighted) and contrast-enhanced sequences. Anatomical sequences offer high spatial resolution, while diffusion-weighted imaging (DWI) assesses the movement of water molecules within tissues, providing information on tissue composition. The contrast-enhanced sequence (Dynamic Contrast-Enhanced, DCE) evaluates tissue perfusion to identify potential tumour angiogenesis. This combination of sequences allows a comprehensive assessment of various aspects of prostate tissue. However, growing evidence suggests that not all sequences are always required. For early detection of prostate cancer, MRI without DCE (=biparametric MRI, bpMRI) should be the standard, because it exhibits similar detection rates for clinically significant prostate cancer. In special cases, such as after previous prostate treatments (e.g., after focal therapy), radiological challenges (e.g., hip replacement), or in cases of negative bpMRI findings with persistent suspicion of prostate cancer, adding DCE may be helpful. MRI screening without DCE is safer, less expensive, and reduces gadolinium emissions. The final results from the prospective, multicentre PRIME study (bpMRI vs. mpMRI before biopsy) are still pending and will further clarify the role of DCE in early detection.
Publication History
Received: 07 November 2024
Accepted after revision: 21 January 2025
Article published online:
05 May 2025
© 2025. Thieme. All rights reserved.
Georg Thieme Verlag KG
Oswald-Hesse-Straße 50, 70469 Stuttgart, Germany
-
Literatur
- 1 Kasivisvanathan V, Rannikko AS, Borghi M. et al. MRI-Targeted or Standard Biopsy for Prostate-Cancer Diagnosis. N Engl J Med 2018; 378: 1767-1777
- 2 Rouvière O, Puech P, Renard-Penna R. et al. Use of prostate systematic and targeted biopsy on the basis of multiparametric MRI in biopsy-naive patients (MRI-FIRST): a prospective, multicentre, paired diagnostic study. Lancet Oncol 2019; 20: 100-109
- 3 Cornford P, Bergh RCN van den, Briers E. et al. EAU-EANM-ESTRO-ESUR-ISUP-SIOG Guidelines on Prostate Cancer-2024 Update. Part I: Screening, Diagnosis, and Local Treatment with Curative Intent. Eur Urol 2024; 86: 148-163
- 4 Turkbey B, Rosenkrantz AB, Haider MA. et al. Prostate Imaging Reporting and Data System Version 2.1: 2019 Update of Prostate Imaging Reporting and Data System Version 2. Eur Urol 2019; 76: 340-351
- 5 Bosaily AE-S, Frangou E, Ahmed HU. et al. Additional Value of Dynamic Contrast-enhanced Sequences in Multiparametric Prostate Magnetic Resonance Imaging: Data from the PROMIS Study. Eur Urol 2020; 78: 503-511
- 6 Ng A, Asif A, Nathan A. et al. Comparison of biparametric and multiparametric magnetic resonance imaging for prostate cancer detection: an 8-month update on the PRIME Study (NCT04571840). Eur Urol 2023; 83: S761-S762
- 7 Russo F, Mazzetti S, Regge D. et al. Diagnostic Accuracy of Single-plane Biparametric and Multiparametric Magnetic Resonance Imaging in Prostate Cancer: A Randomized Noninferiority Trial in Biopsy-naïve Men. Eur Urol Oncol 2021; 4: 855-862
- 8 Eldred-Evans D, Burak P, Connor MJ. et al. Population-Based Prostate Cancer Screening With Magnetic Resonance Imaging or Ultrasonography: The IP1-PROSTAGRAM Study. JAMA Oncol 2021; 7: 395-402
- 9 Boesen L, Nørgaard N, Løgager V. et al. Assessment of the Diagnostic Accuracy of Biparametric Magnetic Resonance Imaging for Prostate Cancer in Biopsy-Naive Men: The Biparametric MRI for Detection of Prostate Cancer (BIDOC) Study. JAMA Netw Open 2018; 1: e180219
- 10 Kang Z, Min X, Weinreb J. et al. Abbreviated Biparametric Versus Standard Multiparametric MRI for Diagnosis of Prostate Cancer: A Systematic Review and Meta-Analysis. AJR Am J Roentgenol 2019; 212: 357-365
- 11 Woo S, Suh CH, Kim SY. et al. Head-to-Head Comparison Between Biparametric and Multiparametric MRI for the Diagnosis of Prostate Cancer: A Systematic Review and Meta-Analysis. AJR Am J Roentgenol 2018; 211: W226-W241
- 12 Leest M van der, Cornel E, Israël B. et al. Head-to-head Comparison of Transrectal Ultrasound-guided Prostate Biopsy Versus Multiparametric Prostate Resonance Imaging with Subsequent Magnetic Resonance-guided Biopsy in Biopsy-naïve Men with Elevated Prostate-specific Antigen: A Large Prospective Multicenter Clinical Study. Eur Urol 2019; 75: 570-578
- 13 Kuhl CK, Bruhn R, Krämer N. et al. Abbreviated Biparametric Prostate MR Imaging in Men with Elevated Prostate-specific Antigen. Radiology 2017; 285: 493-505
- 14 Niu X-K, Chen X-H, Chen Z-F. et al. Diagnostic Performance of Biparametric MRI for Detection of Prostate Cancer: A Systematic Review and Meta-Analysis. AJR Am J Roentgenol 2018; 211: 369-378
- 15 Rajwa P, Pradere B, Quhal F. et al. Reliability of Serial Prostate Magnetic Resonance Imaging to Detect Prostate Cancer Progression During Active Surveillance: A Systematic Review and Meta-analysis. Eur Urol 2021; 80: 549-563
- 16 Moore CM, Giganti F, Albertsen P. et al. Reporting Magnetic Resonance Imaging in Men on Active Surveillance for Prostate Cancer: The PRECISE Recommendations – A Report of a European School of Oncology Task Force. Eur Urol 2017; 71: 648-655
- 17 Giganti F, Stabile A, Stavrinides V. et al. Natural history of prostate cancer on active surveillance: stratification by MRI using the PRECISE recommendations in a UK cohort. Eur Radiol 2021; 31: 1644-1655
- 18 Rouvière O, Girouin N, Glas L. et al. Prostate cancer transrectal HIFU ablation: detection of local recurrences using T2-weighted and dynamic contrast-enhanced MRI. Eur Radiol 2010; 20: 48-55
- 19 Kerkmeijer LGW, Groen VH, Pos FJ. et al. Focal Boost to the Intraprostatic Tumor in External Beam Radiotherapy for Patients With Localized Prostate Cancer: Results From the FLAME Randomized Phase III Trial. J Clin Oncol Off J Am Soc Clin Oncol 2021; 39: 787-796
- 20 Tocco BR, Kishan AU, Ma TM. et al. MR-Guided Radiotherapy for Prostate Cancer. Front Oncol 2020; 10: 616291
- 21 Giganti F, Allen C, Emberton M. et al. Prostate Imaging Quality (PI-QUAL): A New Quality Control Scoring System for Multiparametric Magnetic Resonance Imaging of the Prostate from the PRECISION trial. Eur Urol Oncol 2020; 3: 615-619
- 22 Brünjes R, Hofmann T. Anthropogenic gadolinium in freshwater and drinking water systems. Water Res 2020; 182: 115966