RSS-Feed abonnieren
DOI: 10.1055/a-2508-4479
S3-Guideline on Measures for the Prevention and Control of SARS-CoV-2 Transmission in Schools
S3-Leitlinie Maßnahmen zur Prävention und Kontrolle der SARS-CoV-2-Übertragung in Schulen
Abstract
Aim
This guideline is concerned with measures to prevent and control the transmission of SARS-CoV-2 in primary and secondary schools, addressing school premises and all school-related activities, as well as routes to and from school.
Methods
This evidence- and consensus-based S3 guideline was registered with the AWMF and developed by guideline panelists representing a broad range of scientific societies across multiple disciplines, public health and educational institutions, as well as associations of those directly affected, notably teachers, students and parents.
Recommendations
This guideline contains recommendations on hybrid learning and cohorting of classes or students, wearing masks, measures on the way to school and in class, managing suspected cases and contact persons in schools, options for reducing aerosol concentrations in classrooms and testing strategies. In developing these, the guideline panel considered: balance of health benefits and harms, legal aspects, socio-cultural acceptability, health equity and non-discrimination, social and ecological consequences, financial and economic consequences and feasibility.
Zusammenfassung
Ziel
Diese Leitlinie befasst sich mit Maßnahmen zur Prävention und Kontrolle der Übertragung von SARS-CoV-2 in Grundschulen und weiterführenden Schulen. Sie berücksichtigt sowohl das Schulgelände und alle schulbezogenen Aktivitäten als auch die Wege von und zur Schule.
Methoden
Diese evidenz- und konsensbasierte S3-Leitlinie wurde bei der AWMF registriert und von einem Leitliniengremium erarbeitet, das ein breites Spektrum wissenschaftlicher Fachgesellschaften aus verschiedenen Disziplinen, Einrichtungen des öffentlichen Gesundheitswesens und des Bildungswesens sowie Verbände der direkt Betroffenen, insbesondere Lehrer, Schüler und Eltern, vertritt.
Empfehlungen
Die Leitlinie enthält Empfehlungen zu hybridem Lernen und Kohortenbildung von Klassen oder Schülern, dem Tragen von Masken, Maßnahmen auf dem Schulweg und im Unterricht, dem Umgang mit Verdachtsfällen und Kontaktpersonen in Schulen, Möglichkeiten zur Reduzierung der Aerosolkonzentration in Klassenzimmern und Teststrategien. Bei der Entwicklung dieser Empfehlungen berücksichtigte das Leitlinienteam das Gleichgewicht zwischen gesundheitlichem Nutzen und Schaden, rechtliche Aspekte, soziokulturelle Akzeptanz, gesundheitliche Chancengleichheit und Nichtdiskriminierung, soziale und ökologische Folgen, finanzielle und wirtschaftliche Auswirkungen sowie die Umsetzbarkeit.
Keywords
COVID-19 - children and adolescents - school - WHO-INTEGRATE - public - health - infection controlSchlüsselwörter
COVID-19 - Kinder und Jugendliche - Schule - WHO-INTEGRATE - Public - Health - InfektionskontrollePublikationsverlauf
Artikel online veröffentlicht:
10. Juli 2025
© 2025. Thieme. All rights reserved.
Georg Thieme Verlag
Rüdigerstraße 14, 70469 Stuttgart,
Germany
-
References
- 1 Arbeitsgemeinschaft der Wissenschaftlichen Medizinischen Fachgesellschaften (AWMF) Ständige Kommission Leitlinien. AWMF-Regelwerk „Leitlinien“. Auflage 2.1 2023 https://www.awmf.org/regelwerk/ Accessed: 30.10.2024
- 2 Krishnaratne S, Littlecott H, Sell K. et al. Measures implemented in the school setting to contain the COVID-19 pandemic. Cochrane Database of Systematic Reviews 2022; 2022
- 3 Kratzer S, Pfadenhauer LM, Biallas RL. et al. Unintended consequences of measures implemented in the school setting to contain the COVID-19 pandemic: a scoping review. Cochrane Database of Systematic Reviews 2022;
- 4 Guyatt GH, Oxman AD, Vist GE. et al. GRADE: an emerging consensus on rating quality of evidence and strength of recommendations. BMJ 2008; 336: 924-926
- 5 Rehfuess EA, Stratil JM, Scheel IB. et al. The WHO-INTEGRATE evidence to decision framework version 1.0: integrating WHO norms and values and a complexity perspective. BMJ Glob Health 2019; 4: e000844
- 6 Lessler J, Grabowski MK, Grantz KH. et al. Household COVID-19 risk and in-person schooling. Science 2021; 372: 1092-1097
- 7 Liu D, Lin G, Sun X. et al. Different School Reopening Plans on Coronavirus Disease 2019 Case Growth Rates in the School Setting in the United States. Journal of School Health 2021; 91: 370-375
- 8 Oster E, Jack R, Halloran C. et al. COVID-19 Mitigation Practices and COVID-19 Rates in Schools: Report on Data from Florida. New York and Massachusetts [forthcoming]
- 9 Reinbold GW. Effect of Fall 2020 K-12 instruction types on COVID-19 cases, hospital admissions, and deaths in Illinois counties. American Journal of Infection Control 2021; 49: 1146-1151
- 10 Chu DK, Akl EA, Duda S. et al. Physical distancing, face masks, and eye protection to prevent person-to-person transmission of SARS-CoV-2 and COVID-19: a systematic review and meta-analysis. The Lancet 2020; 395: 1973-1987
- 11 Li Y, Liang M, Gao L. et al. Face masks to prevent transmission of COVID-19: A systematic review and meta-analysis. American Journal of Infection Control 2021; 49: 900-906
- 12 Bershteyn A, Kim H-Y, McGillen J. et al. Which policies most effectively reduce SARS-CoV-2 transmission in schools?. [forthcoming]
- 13 Budzyn SE, Panaggio MJ, Parks SE. et al. Pediatric COVID-19 Cases in Counties With and Without School Mask Requirements – United States, July 1–September 4, 2021. MMWR Morb Mortal Wkly Rep 2021; 70: 1377-1378
- 14 Cohen JA, Mistry D, Kerr CC. et al. Schools are not islands: Balancing COVID-19 risk and educational benefits using structural and temporal countermeasures [forthcoming].
- 15 Donovan CV, Rose C, Lewis KN. et al. SARS-CoV-2 Incidence in K–12 School Districts with Mask-Required Versus Mask-Optional Policies – Arkansas, August–October 2021. MMWR Morb Mortal Wkly Rep 2022; 71: 384-389
- 16 Gill BP, Goyal R, Hotchkiss J. Operating Schools in a Pandemic: Predicted Effects of Opening, Quarantining, and Closing Strategies. (September 2020 ) https://www.mathematica.org/publications/operating-schools-in-a-pandemic-predicted-effects-of-opening-and-quarantining-strategies Accessed: 30.10.2024
- 17 Sombetzki M, Lücker P, Ehmke M. et al. Impact of Changes in Infection Control Measures on the Dynamics of COVID-19 Infections in Schools and Pre-schools. Front Public Health 2021; 9: 780039
- 18 Sasser P, McGuine TA, Haraldsdottir K. et al. Reported COVID-19 Incidence in Wisconsin High School Athletes in Fall 2020. Journal of Athletic Training 2022; 57: 59-64
- 19 Heinrich J, Zhao T, Quartucci C. et al. SARS-CoV-2 Infektionen während Reisen mit Bahn und Bus. Ein systematisches Review epidemiologischer Studien. Gesundheitswesen 2021; 83: 581-592
- 20 Sun KS, Lau TSM, Yeoh EK. et al. Effectiveness of different types and levels of social distancing measures: a scoping review of global evidence from earlier stage of COVID-19 pandemic. BMJ Open 2022; 12: e053938
- 21 Becher L, Gena AW, Alsaad H. et al. The spread of breathing air from wind instruments and singers using schlieren techniques. Indoor Air 2021; 31: 1798-1814
- 22 Fleischer M, Schumann L, Hartmann A. et al. Pre-adolescent children exhibit lower aerosol particle volume emissions than adults for breathing, speaking, singing and shouting. J R Soc Interface 2022; 19: 20210833
- 23 Good N, Fedak KM, Goble D. et al. Respiratory Aerosol Emissions from Vocalization: Age and Sex Differences Are Explained by Volume and Exhaled CO2. Environ Sci Technol Lett 2021; 8: 1071-1076
- 24 McCarthy LP, Orton CM, Watson NA. et al. Aerosol and droplet generation from performing with woodwind and brass instruments. Aerosol Science and Technology 2021; 55: 1277-1287
- 25 Mürbe D, Kriegel M, Lange J. et al. Aerosol emission in professional singing of classical music. Sci Rep 2021; 11: 14861
- 26 Vance D, Shah P, Sataloff RT. COVID-19: Impact on the Musician and Returning to Singing; A Literature Review. Journal of Voice 2023; 37: 292.e1-292.e8
- 27 Exner M, Walger P, Gebel J. et al. Stellungnahme: Zum Einsatz von dezentralen mobilen Luftreinigungsgeräten im Rahmen der Prävention von COVID-19. (25. September 2020 ) https://www.krankenhaushygiene.de/pdfdata/2020_09_03_DGKH_Stellungnahme_Zum_Einsatz_von_dezentralen_Luftreinigern_zur_Praevention.pdf Accessed: 30.10.2024
- 28 Curtius J, Granzin M, Schrod J. Testing mobile air purifiers in a school classroom: Reducing the airborne transmission risk for SARS-CoV-2. Aerosol Science and Technology 2021; 55: 586-599
- 29 James C, Bernstein DI, Cox J. et al. HEPA filtration improves asthma control in children exposed to traffic-related airborne particles. Indoor Air 2020; 30: 235-243
- 30 Kähler CJ, Fuchs T, Hain R. Können mobile Raumluftreiniger eine indirekte SARS-CoV-2 Infektionsgefahr durch Aerosole wirksam reduzieren?. (05. Augustr 2020 ) https://www.unibw.de/lrt7/raumluftreiniger.pdf Accessed: 30.10.2024
- 31 Küpper M, Asbach C, Schneiderwind U. et al. Testing of an Indoor Air Cleaner for Particulate Pollutants under Realistic Conditions in an Office Room. Aerosol Air Qual Res 2019; 19: 1655-1665
- 32 Mousavi ES, Godri Pollitt KJ, Sherman J. et al. Performance analysis of portable HEPA filters and temporary plastic anterooms on the spread of surrogate coronavirus. Building and Environment 2020; 183: 107186
- 33 Siegel JA. Primary and secondary consequences of indoor air cleaners. Indoor Air 2016; 26: 88-96
- 34 Zacharias N, Haag A, Brang-Lamprecht R. et al. Air filtration as a tool for the reduction of viral aerosols. Science of The Total Environment 2021; 772: 144956
- 35 Blanchard AC, Desforges M, Labbé A-C. et al. Evaluation of Real-life Use of Point-of-care Rapid Antigen Testing for SARS-CoV-2 in Schools (EPOCRATES): a cohort study. cmajo 2022; 10: E1027-E1033
- 36 Campbell MM, Benjamin DK, Mann T. et al. Test-to-Stay After Exposure to SARS-CoV-2 in K–12 Schools. Pediatrics 2022; 149: e2021056045
- 37 Delaugerre C, Foissac F, Abdoul H. et al. Prevention of SARS-CoV-2 transmission during a large, live, indoor gathering (SPRING): a non-inferiority, randomised, controlled trial. The Lancet Infectious Diseases 2022; 22: 341-348
- 38 Dewald F, Suárez I, Johnen R. et al. Effective high-throughput RT-qPCR screening for SARS-CoV-2 infections in children. Nat Commun 2022; 13: 3640
- 39 Goldenfeld M, Cohen C, Gilboa M. et al. Rapid Antigen Tests For Safe School Opening in the COVID-19 Pandemic Era. Pediatric Infectious Disease Journal 2022; 41: e312-e317
- 40 Harris-McCoy K, Lee VC, Munna C. et al. Evaluation of a Test to Stay Strategy in Transitional Kindergarten Through Grade 12 Schools – Los Angeles County, California, August 16–October 31, 2021. MMWR Morb Mortal Wkly Rep 2021; 70: 1773-1777
- 41 Ma Q, Liu J, Liu Q. et al. Global Percentage of Asymptomatic SARS-CoV-2 Infections Among the Tested Population and Individuals With Confirmed COVID-19 Diagnosis: A Systematic Review and Meta-analysis. JAMA Netw Open 2021; 4: e2137257
- 42 Pizarro AB, Persad E, Durao S. et al. Workplace interventions to reduce the risk of SARS-CoV-2 infection outside of healthcare settings. Cochrane Database of Systematic Reviews 2022; 2022
- 43 Schechter-Perkins EM, Doron S, Johnston R. et al. A Test-to-Stay Modified Quarantine Program for COVID-19 in Schools. Pediatrics 2022; 149: e2021055727
- 44 Walsh KA, Broderick N, Ahern S. et al. Effectiveness of rapid antigen testing for screening of asymptomatic individuals to limit the transmission of SARS-CoV-2: A rapid review. Reviews in Medical Virology 2022; 32: e2350
- 45 Young BC, Eyre DW, Kendrick S. et al. Daily testing for contacts of individuals with SARS-CoV-2 infection and attendance and SARS-CoV-2 transmission in English secondary schools and colleges: an open-label, cluster-randomised trial. The Lancet 2021; 398: 1217-1229
- 46 Joachim A, Dewald F, Suárez I. et al. Pooled RT-qPCR testing for SARS-CoV-2 surveillance in schools – a cluster randomised trial. EClinicalMedicine 2021; 39: 101082
- 47 Bischoff SC, Singer P, Koller M. et al. Standard operating procedures for ESPEN guidelines and consensus papers. Clinical Nutrition 2015; 34: 1043-1051