RSS-Feed abonnieren
DOI: 10.1055/a-2504-5573
Neonataler Diabetes mellitus – diagnostische Herausforderungen und Implikationen für das praktische Management
Neonatal diabetes mellitus – diagnostic challenges and implications for practical management
Zusammenfassung
Der neonatale Diabetes mellitus (NDM) ist eine seltene Erkrankung, der in über 90 % der Fälle eine monogenetische Ursache zugeordnet werden kann. Eine frühzeitige molekulargenetische Diagnostik ist essenziell, um den Krankheitsverlauf antizipieren zu können, spezifische Therapieansätze zu ermöglichen und syndromale Formen mit extrapankreatischen Manifestationen rechtzeitig zu identifizieren. Dieser Artikel gibt einen umfassenden Überblick über die genetische und klinische Heterogenität des NDM, wobei ein besonderer Fokus auf die Pankreasagenesie als eine Ursache dieser Erkrankung gelegt wird. Darüber hinaus werden Herausforderungen und Fallstricke der molekulargenetischen Diagnostik aufgezeigt, die für eine korrekte Diagnosestellung zu berücksichtigen sind. Insbesondere wird diskutiert, welche methodischen Limitationen die klassische NGS-basierte (NGS: Next Generation Sequencing) Panel-Diagnostik aufweist und wie durch den gezielten Einsatz ergänzender Untersuchungsverfahren – etwa die Analyse regulatorischer Sequenzen und epigenetischer Veränderungen – diagnostische Lücken geschlossen werden können. Die praktische Relevanz dieser Aspekte wird anhand eines klinischen Fallbeispiels einer Patientin mit Pankreasagenesie verdeutlicht.
Abstract
Neonatal diabetes mellitus (NDM) is a rare condition that is attributable to a monogenetic cause in more than 90 % of cases. Early molecular genetic testing is essential to predict disease progression, enable targeted treatment approaches, and identify syndromic forms with extrapancreatic manifestations at an early stage. This article provides a detailed overview of the genetic and clinical heterogeneity of NDM, with a particular focus on pancreatic agenesis as one of its causes. In addition, we discuss the challenges and pitfalls of molecular genetic diagnostics that should be considered to ensure accurate diagnosis. The limitations of conventional NGS-based (NGS: next generation sequencing) panel diagnostics are discussed, and ways in which diagnostic gaps might be addressed through additional testing methods, such as the analysis of regulatory sequences and epigenetic modifications. The clinical relevance of these aspects is illustrated by a case study of a patient with pancreatic agenesis.
Schlüsselwörter
monogener Diabetes mellitus - genetische Diagnostik - Pankreasagenesie - transienter Diabetes mellitusKeywords
Monogenic Diabetes Mellitus - Genetic Diagnostics - Pancreatic Agenesis - Transient Diabetes MellitusPublikationsverlauf
Artikel online veröffentlicht:
12. August 2025
© 2025. Thieme. All rights reserved.
Georg Thieme Verlag KG
Oswald-Hesse-Straße 50, 70469 Stuttgart, Germany
-
Literatur
- 1 Ogle GD, Gegory GA, Maniam J. Type 1 diabetes estimates in children and adults. In: International Diabetes Federation. Hrsg. IDF Diabetes Atlas Reports. 2022
- 2 Quattrin T, Mastrandrea LD, Walker LSK. Type 1 diabetes. Lancet 2023; 401: 2149-2162
- 3 De Franco E, Flanagan SE, Houghton JA. et al. The effect of early, comprehensive genomic testing on clinical care in neonatal diabetes: an international cohort study. Lancet 2015; 386: 957-963
- 4 Johnson MB, Patel KA, De Franco E. et al. Type 1 diabetes can present before the age of 6 months and is characterised by autoimmunity and rapid loss of beta cells. Diabetologia 2020; 63: 2605-2615
- 5 Iafusco D, Stazi MA, Cotichini R. et al. Permanent diabetes mellitus in the first year of life. Diabetologia 2002; 45: 798-804
- 6 De Franco E. Neonatal diabetes caused by disrupted pancreatic and beta-cell development. Diabet Med 2021; 38: e14728
- 7 Deutsche Diabetes Gesellschaft e. V. (DDG). S3-Leitlinie Diagnostik, Therapie und Verlaufskontrolle des Diabetes mellitus im Kindes- und Jugendalter. 15.11.2023 Zugriff am 28. April 2025 unter: https://register.awmf.org/de/leitlinien/detail/057–016
- 8 Barbetti F, Deeb A, Suzuki S. Neonatal diabetes mellitus around the world: update 2024. J Diabetes Investig 2024; 15: 1711-1724
- 9 Rapini N, Delvecchio M, Mucciolo M. et al. The changing landscape of neonatal diabetes mellitus in Italy between 2003 and 2022. J Clin Endocrinol Metab 2024; 109: 2349-2357
- 10 Kim SH, Kim M, Yim J. et al. Transient neonatal diabetes mellitus in SHORT syndrome: a case report. Front Pediatr 2021; 9: 650920
- 11 Lin Y, Sheng H, Ting TH. et al. Molecular and clinical characteristics of monogenic diabetes mellitus in southern Chinese children with onset before 3 years of age. BMJ Open Diabetes Res Care 2020; 8
- 12 Strakova V, Elblova L, Johnson MB. et al. Screening of monogenic autoimmune diabetes among children with type 1 diabetes and multiple autoimmune diseases: is it worth doing?. J Pediatr Endocrinol Metab 2019; 32: 1147-1153
- 13 Flanagan SE, Patch AM, Mackay DJ. et al. Mutations in ATP-sensitive K + channel genes cause transient neonatal diabetes and permanent diabetes in childhood or adulthood. Diabetes 2007; 56: 1930-1937
- 14 Temple IK, Mackay DJG. Diabetes mellitus, 6q24-related transient neonatal. In: Adam MP, Feldman J, Mirzaa GM. et al. Hrsg. Seattle (WA/USA): GeneReviews®; 1993
- 15 Docherty LE, Kabwama S, Lehmann A. et al. Clinical presentation of 6q24 transient neonatal diabetes mellitus (6q24 TNDM) and genotype-phenotype correlation in an international cohort of patients. Diabetologia 2013; 56: 758-762
- 16 Julier C, Nicolino M. Wolcott-Rallison syndrome. Orphanet J Rare Dis 2010; 5: 29
- 17 Babiker T, Vedovato N, Patel K. et al. Successful transfer to sulfonylureas in KCNJ11 neonatal diabetes is determined by the mutation and duration of diabetes. Diabetologia 2016; 59: 1162-1166
- 18 Bowman P, Mathews F, Barbetti F. et al. Long-term follow-up of glycemic and neurological outcomes in an international series of patients with sulfonylurea-treated ABCC8 permanent neonatal diabetes. Diabetes Care 2021; 44: 35-42
- 19 Garcin L, Mericq V, Fauret-Amsellem AL. et al. Neonatal diabetes due to potassium channel mutation: response to sulfonylurea according to the genotype. Pediatr Diabetes 2020; 21: 932-941
- 20 Beltrand J, Elie C, Busiah K. et al. Sulfonylurea therapy benefits neurological and psychomotor functions in patients with neonatal diabetes owing to potassium channel mutations. Diabetes Care 2015; 38: 2033-2041
- 21 Shah RP, Spruyt K, Kragie BC. et al. Visuomotor performance in KCNJ11-related neonatal diabetes is impaired in children with DEND-associated mutations and may be improved by early treatment with sulfonylureas. Diabetes Care 2012; 35: 2086-2088
- 22 Slingerland AS, Nuboer R, Hadders-Algra M. et al. Improved motor development and good long-term glycaemic control with sulfonylurea treatment in a patient with the syndrome of intermediate developmental delay, early-onset generalised epilepsy and neonatal diabetes associated with the V59M mutation in the KCNJ11 gene. Diabetologia 2006; 49: 2559-2563
- 23 Hinton KE. et al. 98 % of pancreatic agenesis cases are caused by variants disrupting gene regulation in development. 9th Meeting of the Study Group on Genetics of Diabetes (SGGD). 17-19 04/2024 Poster Nr. 23 Zugriff am 28. April 2025 unter: https://www.diabetesgenes.org/sggd-exeter-2024/programme
- 24 Tiyaboonchai A, Cardenas-Diaz FL, Ying L. et al. GATA6 plays an important role in the induction of human definitive endoderm, development of the pancreas, and functionality of pancreatic beta cells. Stem Cell Reports 2017; 8: 589-604
- 25 Allen HL, Flanagan SE, Shaw-Smith C. et al. GATA6 haploinsufficiency causes pancreatic agenesis in humans. Nat Genet 2011; 44: 20-22
- 26 Weedon MN, Cebola I, Patch AM. et al. Recessive mutations in a distal PTF1A enhancer cause isolated pancreatic agenesis. Nat Genet 2014; 46: 61-64
- 27 Sellick GS, Barker KT, Stolte-Dijkstra I. et al. Mutations in PTF1A cause pancreatic and cerebellar agenesis. Nat Genet 2004; 36: 1301-1305
- 28 Demirbilek H, Cayir A, Flanagan SE. et al. Clinical characteristics and long-term follow-up of patients with diabetes due to PTF1A enhancer mutations. J Clin Endocrinol Metab 2020; 105: e4351-e4359
- 29 Smith SB, Qu HQ, Taleb N. et al. Rfx6 directs islet formation and insulin production in mice and humans. Nature 2010; 463: 775-780
- 30 De Franco E, Owens NDL, Montaser H. et al. Primate-specific ZNF808 is essential for pancreatic development in humans. Nat Genet 2023; 55: 2075-2081
- 31 De Franco E, Watson RA, Weninger WJ. et al. A specific CNOT1 mutation results in a novel syndrome of pancreatic agenesis and holoprosencephaly through impaired pancreatic and neurological development. Am J Hum Genet 2019; 104: 985-989
- 32 Shaw-Smith C, De Franco E, Lango Allen H. et al. GATA4 mutations are a cause of neonatal and childhood-onset diabetes. Diabetes 2014; 63: 2888-2894
- 33 European Reference Network (Endo-ERN). Genetic disorders of Glucose & Homeostasis (MTG3). Zugriff am 02. Januar 2025 unter: https://endo-ern.eu/rare-genetic-disorders-of-glucose-insulin-homeostasis