Subscribe to RSS
DOI: 10.1055/a-2491-0520
Entschlüsselung des pleiotropen, therapeutischen Potenzials von Adaptogenen
Erkenntnisse aus Genexpressionsstudien von Mediatoren der adaptiven Stressreaktion
Zusammenfassung
Das reduktionistische Konzept in der Pharmakologie, welches auf der Ligand-Rezeptor-Interaktion basiert, erscheint ein nur wenig geeignetes Modell für Adaptogene zu sein. Medizinalpflanzliche Zubereitungen beeinflussen mehrere physiologische Funktionen, zeigen polyvalente pharmakologische Aktivitäten und werden in der traditionellen Medizin bei vielen Erkrankungen eingesetzt. In dieser Übersichtsarbeit wird zum ersten Mal eine rationale Begründung für die pleiotrope therapeutische Wirksamkeit von Adaptogenen geliefert, welche sich auf Beweise aus aktuellen Genexpressionsstudien in Zielzellen stützt und bei denen die Ansätze der Netzwerkpharmakologie und Systembiologie angewandt wurden. Die spezifischen molekularen Zielmoleküle und die Signalmechanismen der adaptiven Stressreaktion, welche an den unspezifischen Wirkungsweisen von Adaptogenen beteiligt sind, werden identifiziert.
Schlüsselwörter
Netzwerkpharmakologie - Adaptogene - Genexpression - pleiotrope Wirkung - unspezifisch - spezifische WirkungPublication History
Article published online:
12 June 2025
© 2025. Thieme. All rights reserved.
Georg Thieme Verlag KG
Oswald-Hesse-Straße 50, 70469 Stuttgart, Germany
-
Literatur
- 1 Hopkins AL. Network pharmacology: The next paradigm in drug discovery. Nat Chem Biol 2008; 4: 682-690
- 2 Van Regenmortel MH. Reductionism and complexity in molecular biology. Scientists now have the tools to unravel biological and overcome the limitations of reductionism. EMBO Rep 2004; 5: 1016-1020
- 3 Fliri AF, Loging WT, Volkmann RA. Cause-effect relationships in medicine: A protein network perspective. Trends Pharmacol Sci 2010; 31: 547-555
- 4 Klipp E, Wade RC, Kummer U. Biochemical network-based drug-target prediction. Curr Opin Biotechnol 2010; 21: 511-516
- 5 Panossian A. Understanding adaptogenic activity: Specificity of the pharmacological action of adaptogens and other phytochemicals. Ann N Y Acad Sci 2017; 1401: 49-64
- 6 Panossian A, Seo EJ, Efferth T. Novel molecular mechanisms for the adaptogenic effects of herbal extracts on isolated brain cells using systems biology. Phytomedicine 2018; 50: 257-284
- 7 Panossian A, Abdelfatah S, Efferth T. Network pharmacology of red ginseng (part I): Effects of ginsenoside Rg5 at physiological and sub-physiological concentrations. Pharmaceuticals 2021; 14: 999
- 8 Panossian A, Abdelfatah S, Efferth T. Network pharmacology of ginseng (part II): The differential effects of red ginseng and ginsenoside Rg5 in cancer and heart diseases as determined by transcriptomics. Pharmaceuticals 2021; 14: 1010
- 9 Panossian A, Seo EJ, Efferth T. Effects of anti-inflammatory and adaptogenic herbal extracts on gene expression of eicosanoids signaling pathways in isolated brain cells. Phytomedicine 2019; 60: 152881
- 10 Seo EJ, Klauck SM, Efferth T, Panossian A. Adaptogens in chemobrain (Part III): Antitoxic effects of plant extracts towards cancer chemotherapy-induced toxicity – Transcriptome-wide microarray analysis of neuroglia cells. Phytomedicine 2019; 56: 246-260
- 11 Seo EJ, Klauck SM, Efferth T, Panossian A. Adaptogens in chemobrain (part I): Plant extracts attenuate cancer chemotherapy-induced cognitive impairment – Transcriptome-wide microarray profiles of neuroglia cells. Phytomedicine 2019; 55: 80-91
- 12 Panossian A, Seo EJ, Wikman G, Efferth T. Synergy assessment of fixed combinations of Herba Andrographidis and Radix Eleutherococci extracts by transcriptome-wide microarray profiling. Phytomedicine 2015; 22: 981-992
- 13 Panossian A, Hamm R, Wikman G, Efferth T. Mechanism of action of Rhodiola, salidroside, tyrosol, and triandrin in isolated neuroglial cells: An interactive pathway analysis of the downstream effects using RNA microarray data. Phytomedicine 2014; 21: 1325-1348
- 14 Panossian A, Hamm R, Kadioglu O. et al. Synergy and antagonism of active constituents of ADAPT-232 on transcriptional level of metabolic regulation of isolated neuroglial cells. Front Neurosci 2013; 7: 16
- 15 Panossian A, Efferth T, Shikov AN. et al. Evolution of the adaptogenic concept from traditional use to medical systems: Pharmacology of stress- and aging-related diseases. Med Res Rev 2021; 41: 630-703
- 16 Lewis WH, Elwin-Lewis MPF. Panaceas, Adaptogens, and Tonics. In: Lewis WH, Elwin-Lewis MPF, Eds. Medical Botany: Plants Affecting Human Health. 2nd ed.. Hoboken, NJ, USA: John Wiley & Sons; 2003. Part II, Chapter 18 608-628
- 17 de Oliveira Zanuso B, de Oliveira Dos Santos AR, Miola V. et al. Panax ginseng and aging related disorders: A systematic review. Exp Gerontol 2022; 161: 111731
- 18 Ratan ZA, Haidere MF, Hong YH. et al. Pharmacological potential of ginseng and its major component, ginsenosides. J Ginseng Res 2021; 45: 199-210
- 19 Kumar S, Singh B, Bajpai V. Andrographis paniculata (Burm.f.) Nees: Traditional uses, phytochemistry, pharmacological properties and quality control/quality assurance. J Ethnopharmacol 2021; 275: 114054
- 20 Zeng B, Wei A, Zhou Q. et al. Andrographolide: A review of its pharmacology, pharmacokinetics, toxicity and clinical trials and pharmaceutical researches. Phytother Res 2022; 36: 336-364
- 21 Paul S, Chakraborty S, Anand U. et al. Withania somnifera (L.) Dunal (Ashwagandha): A comprehensive review on ethnopharmacology, pharmacotherapeutics, biomedicinal and toxicological aspects. Biomed Pharmacother 2021; 143: 112175
- 22 Khan MI, Maqsood M, Saeed RA. et al. Phytochemistry, food application, and therapeutic potential of the medicinal plant (Withania coagulans): A review. Molecules 2021; 26: 6881
- 23 Ahsan R, Arshad M, Khushtar M. et al. A Comprehensive review on physiological effects of curcumin. Drug Res 2020; 70: 441-447
- 24 Ghafouri-Fard S, Shoorei H, Bahroudi Z. et al. Nrf2-Related therapeutic effects of curcumin in different disorders. Biomolecules 2022; 12: 82
- 25 Bahrami A, Montecucco F, Carbone F, Sahebkar A. Effects of curcumin on aging: Molecular mechanisms and experimental evidence. Biomed Res Int 2021; 2021: 8972074
- 26 Panossian A, Gabrielian E, Wagner H. Plant adaptogens. II. Bryonia as an adaptogen. Phytomedicine 1997; 4: 85-99
- 27 Forsdike K, Pirotta M. St John's wort for depression: Scoping review about perceptions and use by general practitioners in clinical practice. J Pharm Pharmacol 2019; 71: 117-128
- 28 Xiao CY, Mu Q, Gibbons S. The phytochemistry and pharmacology of Hypericum . Prog Chem Org Nat Prod 2020; 112: 85-182
- 29 Tanaka N, Kashiwada Y. Characteristic metabolites of Hypericum plants: Their chemical structures and biological activities. J Nat Med 2021; 75: 423-433
- 30 Allegra A, Tonacci A, Spagnolo EV. et al. Antiproliferative effects of St. John's Wort, its derivatives, and other Hypericum species in hematologic malignancies. Int J Mol Sci 2020; 22: 146
- 31 Brekhman II, Dardymov IV. New substances of plant origin which increase nonspecific resistance. Annu Rev Pharmacol 1969; 9: 419-430
- 32 Leitão SG, Leitão GG, de Oliveira DR. Saracura-Mirá, a proposed Brazilian Amazonian adaptogen from Ampelozizyphus amazonicus . Plants 2022; 11: 191
- 33 Allen K, Bennett JW. Tour of truffles: Aromas, aphrodisiacs, adaptogens, and more. Mycobiology 2021; 49: 201-212
- 34 Panossian A, Brendler T. The role of adaptogens in prophylaxis and treatment of viral respiratory infections. Pharmaceuticals 2020; 13: E236
- 35 Liu T, Zhu L, Wang L. A narrative review of the pharmacology of ginsenoside compound K. Ann Transl Med 2022; 10: 234
- 36 Liao LY, He YF, Li L. et al. A preliminary review of studies on adaptogens: Comparison of their bioactivity in TCM with that of ginseng-like herbs used worldwide. Chin Med 2018; 13: 57
- 37 Nocerino E, Amato M, Izzo AA. The aphrodisiac and adaptogenic properties of ginseng. Fitoterapia 2000; 71: S1-S5
- 38 Cheng Y, Shen LH, Zhang JT. Anti-amnestic and anti-aging effects of ginsenoside Rg1 and Rb1 and its mechanism of action. Acta Pharmacol Sin 2005; 26: 143-149
- 39 Yoon SJ, Kim SK, Lee NY. et al. Effect of Korean Red Ginseng on metabolic syndrome. J Ginseng Res 2021; 45: 380-389
- 40 Hiai S, Yokoyama H, Oura H, Yano S. Stimulation of pituitary-adrenocortical system by ginseng saponin. Endocrinol Jpn 1979; 26: 661-665
- 41 Filaretov AA, Bogdanova TS, Podvigina TT, Bodganov AI. Role of pituitary-adrenocortical system in body adaptation abilities. Exp Clin Endocrinol 1988; 92: 129-136
- 42 Zhang JT, Qu ZW, Liu Y, Deng HL. Preliminary study on antiamnestic mechanism of ginsenoside Rg1 and Rb1. Chin Med J 1990; 103: 932-938
- 43 Jin W, Ma R, Zhai L. et al. Ginsenoside Rd attenuates ACTH-induced corticosterone secretion by blocking the MC2R-cAMP/PKA/CREB pathway in Y1 mouse adrenocortical cells. Life Sci 2020; 245: 117337
- 44 Zarneshan SN, Fakhri S, Khan H. Targeting Akt/CREB/BDNF signaling pathway by ginsenosides in neurodegenerative diseases: A mechanistic approach. Pharmacol Res 2022; 177: 106099
- 45 Zhang Q, Liu J, Duan H. et al. Activation of Nrf2/HO-1 signaling: An important molecular mechanism of herbal medicine in the treatment of atherosclerosis via the protection of vascular endothelial cells from oxidative stress. J Adv Res 2021; 34: 43-63
- 46 Irfan M, Kwak YS, Han CK. et al. Adaptogenic effects of Panax ginseng on modulation of cardiovascular functions. J Ginseng Res 2020; 44: 538-543
- 47 Irfan M, Kim M, Rhee MH. Anti-platelet role of Korean ginseng and ginsenosides in cardiovascular diseases. J Ginseng Res 2020; 44: 24-32
- 48 Wan Y, Wang J, Xu JF. et al. Panax ginseng and its ginsenosides: Potential candidates for the prevention and treatment of chemotherapy-induced side effects. J Ginseng Res 2021; 45: 617-630
- 49 Differencebetween.com. Difference between Mode of Action and Mechanism of Action. Im Internet: https://www.differencebetween.com/difference-between-mode-of-action-and-vs-mechanism-of-action/ (accessed on 22 Febuary 2022).
- 50 Todorova V, Ivanov K, Ivanova S. Comparison between the biological active compounds in plants with adaptogenic properties (Rhaponticum carthamoides, Lepidium meyenii, Eleutherococcus senticosus and Panax ginseng). Plants 2021; 11: 64
- 51 Todorova V, Ivanov K, Delattre C. et al. Plant adaptogens – history and future perspectives. Nutrients 2021; 13: 2861
- 52 Lee TXY, Wu J, Jean WH. et al. Reduced stem cell aging in exercised human skeletal muscle is enhanced by ginsenoside Rg1. Aging (Albany New York) 2021; 13: 16567-16576
- 53 Wu J, Saovieng S, Cheng IS. et al. Ginsenoside Rg1 supplementation clears senescence-associated β-galactosidase in exercising human skeletal muscle. J Ginseng Res 2019; 43: 580-588
- 54 Hou CW, Lee SD, Kao CL. et al. Improved inflammatory balance of human skeletal muscle during exercise after supplementations of the ginseng-based steroid Rg1. PLoS ONE 2015; 10: e0116387
- 55 Zhang H, Shen WS, Gao CH. et al. Protective effects of salidroside on epirubicin-induced early left ventricular regional systolic dysfunction in patients with breast cancer. Drugs R D 2012; 12: 101-106
- 56 Panossian A, Wikman G, Sarris J. Rosenroot (Rhodiola rosea): Traditional use, chemical composition pharmacology and clinical efficacy. Phytomedicine 2010; 17: 481-493
- 57 Aksenova RA, Zotova MI, Nekhoda MF, Cherdintsev SG. Comparative characteristics of the stimulating and adaptogenic effects of Rhodiola rosea preparations. In: Saratikov AS, ed. Stimulants of the Central Nervous System. Tomsk, Russia: Tomsk University Press; 1968. Vol 2. 3-12
- 58 Ciampi E, Uribe-San-Martin R, Cárcamo C. et al. Efficacy of andrographolide in not active progressive multiple sclerosis: A prospective exploratory double-blind, parallel-group, randomized, placebo-controlled trial. BMC Neurol 2020; 20: 173