Subscribe to RSS
DOI: 10.1055/a-2420-7509
Vitamin D – das Leistungshormon im Spitzensport

Zusammenfassung
Vitamin D übt seine physiologischen Funktionen über die Aktivierung des Transkriptionsfaktors Vitamin-D-Rezeptor (VDR) aus, der u. a. in Muskel- und Knochenzellen und in Zellen des Immunsystems exprimiert wird. Im Spitzensport ist ein 25(OH)D-Spiegel von mind. 50 ng/ml anzustreben, um die positiven Wirkungen auf Muskelkraft und Ausdauer zu nutzen, Sportverletzungen sowie Infektionen vorzubeugen und die Regenerationsfähigkeit zu verbessern. Es bestehen Wechselwirkungen zwischen Vitamin D und Eisen, das neben dem Sauerstofftransport an zahlreichen Stoffwechselprozessen im Energiestoffwechsel beteiligt ist. Ein diätetischer Mangel an Kalzium, Magnesium und Vitamin D ist zu vermeiden, da proinflammatorische Prozesse resultieren können.
Schlüsselwörter
Vitamin D - Leistungssport - Vitamin-D-Rezeptor (VDR) - Muskelfunktion - nichtgenomische/genomische Effekte - Eisen - Kalzium - MagnesiumPublication History
Article published online:
23 October 2024
© 2024. Thieme. All rights reserved.
Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart,
Germany
-
Literatur
- 1 Peeling P, Binnie MJ, Goods PSR. Evidence-Based Supplements for the Enhancement of Athletic Performance. Int J Sport Nutr Exerc Metab 2018; 28: 178-187
- 2 Rawson ES, Miles MP, Larson-Meyer DE. Dietary supplements for health, adaptation, and recovery in athletes. Int J Sport Nutr Exerc Metab 2018; 28: 188-199
- 3 Gröber U. Metabolic Tuning: Mikronährstoffe im Leistungssport. 2. Aufl. Stuttgart: Wissenschaftliche Verlagsgesellschaft; 2024
- 4 Gorkin Z, Gorkin MJ, Teslenko NE. The effect of ultraviolet irradiation upon training for 100 m sprint. Fiziol Zh USSR 1938; 25: 695-701
- 5 Ronge HE. Increase of physical effectiveness by systematic ultraviolet irradiation. Strahlentherapie 1952; 88: 563-566
- 6 Spellerberg AE. Increase of athletic effectiveness by systematic ultraviolet irradiation. Strahlentherapie 1952; 88: 567-570
- 7 Cesari M, Incalzi RA, Zamboni V. The Vitamin D Hormone: A Multitude of actions potentially influencing the Physical function Decline in Older persons. Geriatr Gerontol Int 2011; 11: 133-142
- 8 Van der Meijden K, Bravenboer N, Dirks NF. et al. Effects of 1,25(OH)2D3 and 25(OH)D3 on C2C12 Myoblast Proliferation, Differentiation, and Myotube Hypertrophy. J Cell Physiol 2016; 231: 2517-2528
- 9 Zhang L, Quan M, Cao ZB. Effect of vitamin D supplementation on upper and lower limb muscle strength and muscle power in athletes: A meta-analysis. PloS One 2019; 14: e0215826
- 10 Ceglia L, Harris SS. Vitamin D and its role in skeletal muscle. Calcif Tissue Int 2013; 92: 151-162
- 11 Dzik KP, Kaczor JJ. Mechanisms of vitamin D on skeletal muscle function: oxidative stress, energy metabolism and anabolic state. Eur J Appl Physiol 2019; 119: 825-839
- 12 Ryan ZC, Craig TA, Folmes CD. et al. 1α,25-Dihydroxyvitamin D3 Regulates Mitochondrial Oxygen Consumption and Dynamics in Human Skeletal Muscle Cells. J Biol Chem 2016; 291: 1514-1528
- 13 Gomes MD, Lecker SH, Jagoe RT. et al. Atrogin-1, a muscle-specific F-box protein highly expressed during muscle atrophy. Proc Natl Acad Sci USA 2001; 98: 14440-14445
- 14 Garcia-Valverde A, Rosell J, Sayols S. et al. E3 ubiquitin ligase Atrogin-1 mediates adaptive resistance to KIT-targeted inhibition in gastrointestinal stromal tumor. Oncogene 2021; 40: 6614-6626
- 15 Braga M, Simmons Z, Norris KC. et al. Vitamin D induces myogenic differentiation in skeletal muscle derived stem cells. Endocr Connect 2017; 6: 139-150
- 16 Birge SJ, Haddad JG. 25-hydroxycholecalciferol stimulation of muscle metabolism. J Clin Invest 1975; 56: 1100-1107
- 17 Bollen SE, Atherton PJ. Myogenic, genomic and non-genomic influences of the vitamin D axis in skeletal muscle. Cell Biochem Funct 2021; 39: 48-59
- 18 Roizen J, Long C, Casella A. et al. High dose dietary vitamin D allocates surplus calories to muscle and growth instead of fat via modulation of myostatin and leptin signaling. Res Sq (Preprint). 2024
- 19 Iolascon G, Moretti A, Paoletta M. et al. Muscle Regeneration and Function in Sports: Focus on Vitamin D. Medicina (Kaunas) 2021; 57: 1015
- 20 Gröber U, Kisters K. Magnesium: The Mitochondrial Blockbuster in Competitive Sports. Vitam. Miner 2019; 8: 181
- 21 Malczewska-Lenczowska J, Sitkowski D, Surała O. et al. The Association between Iron and Vitamin D Status in Female Elite Athletes. Nutrients 2018; 10: 167
- 22 Shoemaker ME, Salmon OF, Smith CM. et al. Influences of Vitamin D and Iron Status on Skeletal Muscle Health: A Narrative Review. Nutrients 2022; 14: 2717
- 23 Girgis CM, Brennan-Speranza T. Vitamin D and Skeletal Muscle: Current Concepts From Preclinical Studies. JBMR Plus 2021; 5: e10575
- 24 Teixeira P, Santos AC, Casalta-Lopes J. et al. Prevalence of vitamin D deficiency amongst soccer athletes and effects of 8 weeks supplementation. J Sports Med Phys Fitness 2019; 59: 693-699
- 25 Hamilton B, Whiteley R, Farooq A. et al. Vitamin D concentration in 342 professional football players and association with lower limb isokinetic function. J Sci Med Sport 2014; 17: 139-143
- 26 Grieshober JA, Mehran N, Photopolous C. et al. Vitamin D Insufficiency Among Professional Basketball Players: Relationship to Fracture Risk and Athletic Performance. Orthop J Sports Med 2018; 6 2325967118774329
- 27 Michalczyk MM, Golas A, Maszcyk A. et al. Influence of Sunlight and Oral D3 Supplementation on Serum 25(OH)D Concentration and Exercise Performance in Elite Soccer Players. Nutrients 2020; 12: 1311
- 28 Tuma C, Schick A, Pommerening N. et al. Effects of an Individualized vs. Standardized Vitamin D Supplementation on the 25(OH)D Level in Athletes. Nutrients 2023; 15: 4747
- 29 Ksiazek A, Zagrodna A, Slowinska-Lisowska M. et al. Vitamin D, Skeletal Muscle Function and Athletic Performance in Athletes – A Narrative Review. Nutrients 2019; 11: 1800
- 30 Geiker NRW, Hansen M, Jakobsen J. et al. Vitamin D Status and Muscle Function Among Adolescent and Young Swimmers. Int J Sport Nutr Exerc Metab 2017; 27: 399-407
- 31 Bauer P, Henni S, Dörr O. et al. High prevalence of vitamin D insufficiency in professional handball athletes. Phys Sportsmed 2019; 47: 71-77
- 32 Rebolledo BJ, Bernard JA, Werner BC. et al. The Association of Vitamin D Status in Lower Extremity Muscle Strains and Core Muscle Injuries at the National Football League Combine. Arthroscopy 2018; 34: 1280-1285
- 33 Zebrowska A, Sadowska-Krepa E, Stanula A. et al. The effect of vitamin D supplementation on serum total 25(OH) levels and biochemical markers of skeletal muscles in runners. Int Soc Sports Nutr 2020; 17: 18
- 34 Nemere J, Farach-Carson MC, Sterling TM. et al. Ribozyme knockdown functionally links a 1,25(OH)2D3 membrane binding protein 1,25D3-MARRS) and phosphate uptake in intestinal cells. PNAS 2004; 101: 7392-7397
- 35 Moe SM. Disorders Involving Calcium, Phosphorus, and Magnesium. Prim Care 2008; 35: 215-2
- 36 Faouzi M, KIlch T, Horgen FD. et al. The TRPM7 channel kinase regulates store-operated calcium entry. J Physiol 2017; 595: 3165-3180
- 37 Beesetty P, Wieczerzak KB, Gibson J. et al. Inactivation of TRPM7 kinase in mice results in enlarged spleens, reduced T-cell proliferation and diminished store-operated calcium entry. Sci Rep 2018; 8: 3023
- 38 Suzuki S, Lis A, Schmitz C. et al. The TRPM7 kinase limits receptor-induced calcium release by regulating heterotrimeric G-proteins. Cell Mol Life Sci 2018; 75: 3069-3078
- 39 Qi X, Kong H, Ding W. et al. Abnormal Coagulation Function of Patients With COVID-19 Is Significantly Related to Hypocalcemia and Severe Inflammation. Front Med (Lausanne) 2021; 8: 638194
- 40 Iamartino L, Brandl ML. The calcium-sensing receptor in inflammation: Recent Updates. Front Physiol 2022; 13: 1059369
- 41 Murr C, Pilz S, Grammer TB. et al. Vitamin D deficiency parallels inflammation and immune activation, the Ludwigshafen Risk and Cardiovascular Health (LURIC) study. Clin Chem Lab Med 2012; 50: 2205-2212
- 42 Liong S, Di Quinzo MK, Fleming G. et al. Is Vitamin Binding Protein a Novel Predictor of Labour?. PLos One 2013; 8: e76490
- 43 Dauletbaev N, Hercovitch K, Das M. et al. Down-regulation of IL-8 by high-dose vitamin D is specific to hyperinflammatory macrophages and involves mechanisms beyond up-regulation of DUSP1. Br J Pharmacol 2015; 172: 4757-4771
- 44 Zhou A, Hyppönen E. Vitamin D deficiency and C-reactive protein: a bidirectional Mendelian randomization study. Int J Epidemiol 2023; 52: 260-271
- 45 Abrams GD, Feldman D, Safran MR. et al. Effects of Vitamin D on Skeletal Muscle and Athletic Performance. J Am Acad Orthop Surg 2018; 26: 278-285
- 46 Bass JB, Nakhuda A, Deane CS. et al. Overexpression of the vitamin D receptor (VDR) induces skeletal muscle hypertrophy. Mol Metab 2020; 42: 101059
- 47 Bollen SE, Atherton PJ. Myogenic, genomic and non-genomic influences of the vitamin D axis in skeletal muscle. Cell Biochem Funct 2021; 39: 48-59
- 48 Pojednic RM, Ceglia L, Olson K. et al. Effects of 1,25-dihydroxyvitamin D3 and vitamin D3 on the expression of the vitamin d receptor in human skeletal muscle cells. Calcif Tissue Int 2015; 96: 256-263
- 49 Ksiazek A, Dziubek W, Pietraszewska J. Relationship between 25(OH)D levels and athletic performance in elite Polish judoists. Biol Sport 2018; 35: 191-196
- 50 Maves L, Talbot J. Skeletal muscle fiber type: using insights from muscle developmental biology to dissect targets for susceptibility and resistance to muscle disease. Wiley Interdiscip Rev Dev Biol 2016; 5: 518-534
- 51 Han Q, Xiang M, An N. et al. Effects of vitamin D3 supplementation on strength of lower and upper extremities in athletes: an updated systematic review and meta-analysis of randomized controlled trials. Front Nutr 2024; 11: 1381301
- 52 Wyatt PB, Riter CR, Satalich JR. et al. Effects of Vitamin D Supplementation in Elite Athletes: A Systematic Review. Orthop J Sports Med 2024; 12 23259671231220371