Subscribe to RSS
DOI: 10.1055/a-2358-9401
Current Treatments and Future Directions for Facial Paralysis

Abstract
Facial palsy is a condition that affects the facial nerve, the seventh of the 12 cranial nerves. Its main function is to control the muscles of facial expression. This involves the ability to express emotion through controlling the position of the mouth, the eyebrow, nostrils, and eye closure. The facial nerve also plays a key role in maintaining the posture of the mouth and as such, people with facial paralysis often have problems with drooling, speech, and dental hygiene.
Due to the devastating effects on the quality of life of individuals with facial palsy, there are a multitude of various treatment options for the paralyzed face. This article reviews current management strategies and points towards promising future directions for research in the field of facial reanimation.
Publication History
Accepted Manuscript online:
02 July 2024
Article published online:
01 August 2024
© 2024. Thieme. All rights reserved.
Thieme Medical Publishers, Inc.
333 Seventh Avenue, 18th Floor, New York, NY 10001, USA
-
References
- 1
Bradbury ET,
Simons W,
Sanders R.
Psychological and social factors in reconstructive surgery for hemi-facial palsy.
J Plast Reconstr Aesthet Surg 2006; 59 (03) 272-278
MissingFormLabel
- 2
Coulson SE,
O'dwyer NJ,
Adams RD,
Croxson GR.
Expression of emotion and quality of life after facial nerve paralysis. Otol Neurotol
2004; 25 (06) 1014-1019
MissingFormLabel
- 3
Ishii LE,
Nellis JC,
Boahene KD,
Byrne P,
Ishii M.
The importance and psychology of facial expression. Otolaryngol Clin North Am 2018;
51 (06) 1011-1017
MissingFormLabel
- 4
Bogart KR,
Frandrup E,
Locke T.
et al.
“Rare place where I feel normal”: perceptions of a social support conference among
parents of and people with Moebius syndrome. Res Dev Disabil 2017; 64: 143-151
MissingFormLabel
- 5
Jenke AC,
Stoek LM,
Zilbauer M,
Wirth S,
Borusiak P.
Facial palsy: etiology, outcome and management in children. Eur J Paediatr Neurol
2011; 15 (03) 209-213
MissingFormLabel
- 6
Shargorodsky J,
Lin HW,
Gopen Q.
Facial nerve palsy in the pediatric population. Clin Pediatr (Phila) 2010; 49 (05)
411-417
MissingFormLabel
- 7
Falco NA,
Eriksson E.
Facial nerve palsy in the newborn: incidence and outcome. Plast Reconstr Surg 1990;
85 (01) 1-4
MissingFormLabel
- 8
Gilden DH.
Clinical practice. Bell's palsy. N Engl J Med 2004; 351 (13) 1323-1331
MissingFormLabel
- 9
Katusic SK,
Beard CM,
Wiederholt WC,
Bergstralh EJ,
Kurland LT.
Incidence, clinical features, and prognosis in Bell's palsy, Rochester, Minnesota,
1968-1982. Ann Neurol 1986; 20 (05) 622-627
MissingFormLabel
- 10
Peitersen E.
Bell's palsy: the spontaneous course of 2,500 peripheral facial nerve palsies of different
etiologies. Acta Otolaryngol Suppl 2002; (549) 4-30
MissingFormLabel
- 11
Karalok ZS,
Taskin BD,
Ozturk Z,
Gurkas E,
Koc TB,
Guven A.
Childhood peripheral facial palsy. Childs Nerv Syst 2018; 34 (05) 911-917
MissingFormLabel
- 12
Niziol R,
Henry FP,
Leckenby JI,
Grobbelaar AO.
Is there an ideal outcome scoring system for facial reanimation surgery? A review
of current methods and suggestions for future publications. J Plast Reconstr Aesthet
Surg 2015; 68 (04) 447-456
MissingFormLabel
- 13
Laing JH,
Harrison DH,
Jones BM,
Laing GJ.
Is permanent congenital facial palsy caused by birth trauma?. Arch Dis Child 1996;
74 (01) 56-58
MissingFormLabel
- 14
Kremer H,
Kuyt LP,
van den Helm B.
et al.
Localization of a gene for Möbius syndrome to chromosome 3q by linkage analysis in
a Dutch family. Hum Mol Genet 1996; 5 (09) 1367-1371
MissingFormLabel
- 15
Li Q,
Zhou X,
Wang Y,
Qian J,
Zhang Q.
Facial paralysis in patients with hemifacial microsomia: frequency, distribution,
and association with other OMENS abnormalities. J Craniofac Surg 2018; 29 (06) 1633-1637
MissingFormLabel
- 16
Zuo KJ,
Heinelt M,
Ho ES,
Forrest CR,
Zuker RM,
Borschel GH.
Dynamic reconstruction of facial paralysis in craniofacial microsomia. Plast Reconstr
Surg 2022; 149 (04) 919-929
MissingFormLabel
- 17
Jowett N,
Gaudin RA,
Banks CA,
Hadlock TA.
Steroid use in Lyme disease-associated facial palsy is associated with worse long-term
outcomes. Laryngoscope 2017; 127 (06) 1451-1458
MissingFormLabel
- 18
Coker NJ,
Kendall KA,
Jenkins HA,
Alford BR.
Traumatic intratemporal facial nerve injury: management rationale for preservation
of function. Otolaryngol Head Neck Surg 1987; 97 (03) 262-269
MissingFormLabel
- 19
Harii K,
Ohmori K,
Torii S.
Free gracilis muscle transplantation, with microneurovascular anastomoses for the
treatment of facial paralysis. A preliminary report. Plast Reconstr Surg 1976; 57
(02) 133-143
MissingFormLabel
- 20
Aronson S,
Applebaum SA,
Kelsey LJ,
Gosain AK.
Evidence-based practices in facial reanimation surgery. Plast Reconstr Surg 2023;
152 (03) 520e-533e
MissingFormLabel
- 21
Al Khabori MS,
Oubari H,
Guerreschi P,
Labbé D.
Lengthening temporalis myoplasty: a surgical guide to Labbé's technique. Atlas Oral
Maxillofac Surg Clin North Am 2023; 31 (01) 43-55
MissingFormLabel
- 22
Moubayed SP,
Labbé D,
Rahal A.
Lengthening temporalis myoplasty for facial paralysis reanimation: an objective analysis
of each surgical step. JAMA Facial Plast Surg 2015; 17 (03) 179-182
MissingFormLabel
- 23
Ghali S,
MacQuillan A,
Grobbelaar AO.
Reanimation of the middle and lower face in facial paralysis: review of the literature
and personal approach. J Plast Reconstr Aesthet Surg 2011; 64 (04) 423-431
MissingFormLabel
- 24
Harrison DH,
Grobbelaar AO.
Pectoralis minor muscle transfer for unilateral facial palsy reanimation: an experience
of 35 years and 637 cases. J Plast Reconstr Aesthet Surg 2012; 65 (07) 845-850
MissingFormLabel
- 25
Gasteratos K,
Azzawi SA,
Vlachopoulos N,
Lese I,
Spyropoulou GA,
Grobbelaar AO.
Workhorse free functional muscle transfer techniques for smile reanimation in children
with congenital facial palsy: case report and systematic review of the literature.
J Plast Reconstr Aesthet Surg 2021; 74 (07) 1423-1435
MissingFormLabel
- 26
Henry FP,
Leckenby JI,
Butler DP,
Grobbelaar AO.
An algorithm to guide recipient vessel selection in cases of free functional muscle
transfer for facial reanimation. Arch Plast Surg 2014; 41 (06) 716-721
MissingFormLabel
- 27
Leckenby JI,
Patel AU,
Patel S,
Rahman AA,
Haque S,
Grobbelaar AO.
Free functional platysma transfer for restoration of spontaneous eye closure in facial
paralysis. Plast Reconstr Surg 2023; 151 (06) 1296-1305
MissingFormLabel
- 28
Woollard AC,
Harrison DH,
Grobbelaar AO.
An approach to bilateral facial paralysis. J Plast Reconstr Aesthet Surg 2010; 63
(09) 1557-1560
MissingFormLabel
- 29
Terzis JK,
Noah EM.
Dynamic restoration in Möbius and Möbius-like patients. Plast Reconstr Surg 2003;
111 (01) 40-55
MissingFormLabel
- 30
Terzis JK,
Sweet RC,
Dykes RW,
Williams HB.
Recovery of function in free muscle transplants using microneurovascular anastomoses.
J Hand Surg Am 1978; 3 (01) 37-59
MissingFormLabel
- 31
Hoang D,
Chen VW,
Seruya M.
Recovery of elbow flexion after nerve reconstruction versus free functional muscle
transfer for late, traumatic brachial plexus palsy: a systematic review. Plast Reconstr
Surg 2018; 141 (04) 949-959
MissingFormLabel
- 32
Krauss EM,
Tung TH,
Moore AM.
Free functional muscle transfers to restore upper extremity function. Hand Clin 2016;
32 (02) 243-256
MissingFormLabel
- 33
Kang H,
Lichtman JW.
Motor axon regeneration and muscle reinnervation in young adult and aged animals.
J Neurosci 2013; 33 (50) 19480-19491
MissingFormLabel
- 34
Verdú E,
Ceballos D,
Vilches JJ,
Navarro X.
Influence of aging on peripheral nerve function and regeneration. J Peripher Nerv
Syst 2000; 5 (04) 191-208
MissingFormLabel
- 35
Leckenby JI,
Chacon MA,
Milek D,
Lichtman JW,
Grobbelaar AO.
Axonal regeneration through autologous grafts: does the axonal load influence regeneration?.
J Surg Res 2022; 280: 379-388
MissingFormLabel
- 36
Tavares-Brito J,
van Veen MM,
Dusseldorp JR,
Bahmad Jr F,
Hadlock TA.
Facial palsy-specific quality of life in 920 patients: correlation with clinician-graded
severity and predicting factors. Laryngoscope 2019; 129 (01) 100-104
MissingFormLabel
- 37
Banks CA,
Bhama PK,
Park J,
Hadlock CR,
Hadlock TA.
Clinician-graded electronic facial paralysis assessment: the eFACE. Plast Reconstr
Surg 2015; 136 (02) 223e-230e
MissingFormLabel
- 38
Bulstrode NW,
Harrison DH.
The phenomenon of the late recovered Bell's palsy: treatment options to improve facial
symmetry. Plast Reconstr Surg 2005; 115 (06) 1466-1471
MissingFormLabel
- 39
MacQuillan AH,
Grobbelaar AO,
Baiarda FU.
A theory explaining the development of late-onset tightening or contracture in patients
who have undergone facial reanimation surgery with free functional muscle transfers.
Plast Reconstr Surg 2009; 124 (05) 254e-255e
MissingFormLabel
- 40
Terzis JK,
Tzafetta K.
“Babysitter” procedure with concomitant muscle transfer in facial paralysis. Plast
Reconstr Surg 2009; 124 (04) 1142-1156
MissingFormLabel
- 41
Cardenas-Mejia A,
Covarrubias-Ramirez JV,
Bello-Margolis A,
Rozen S.
Double innervated free functional muscle transfer for facial reanimation. J Plast
Surg Hand Surg 2015; 49 (03) 183-188
MissingFormLabel
- 42
Hashimoto K,
Matsumine H,
Osaki H.
et al.
Prevention of denervated muscle atrophy with accelerated nerve-regeneration by babysitter
procedure in rat facial nerve paralysis model. Microsurgery 2021; 41 (01) 61-69
MissingFormLabel
- 43
Mersa B,
Tiangco DA,
Terzis JK.
Efficacy of the “baby-sitter” procedure after prolonged denervation. J Reconstr Microsurg
2000; 16 (01) 27-35
MissingFormLabel
- 44
Terzis JK,
Tzafetta K.
The “babysitter” procedure: minihypoglossal to facial nerve transfer and cross-facial
nerve grafting. Plast Reconstr Surg 2009; 123 (03) 865-876
MissingFormLabel
- 45
Placheta E,
Wood MD,
Lafontaine C.
et al.
Enhancement of facial nerve motoneuron regeneration through cross-face nerve grafts
by adding end-to-side sensory axons. Plast Reconstr Surg 2015; 135 (02) 460-471
MissingFormLabel
- 46
Furukawa H,
Saito A,
Mol W,
Sekido M,
Sasaki S,
Yamamoto Y.
Double innervation occurs in the facial mimetic muscles after facial-hypoglossal end-to-side
neural repair: rat model for neural supercharge concept. J Plast Reconstr Aesthet
Surg 2008; 61 (03) 257-264
MissingFormLabel
- 47
Bianchi B,
Ferri A,
Ferrari S.
et al.
Cross-facial nerve graft and masseteric nerve cooptation for one-stage facial reanimation:
principles, indications, and surgical procedure. Head Neck 2014; 36 (02) 235-240
MissingFormLabel
- 48
Biglioli F,
Colombo V,
Tarabbia F.
et al.
Double innervation in free-flap surgery for long-standing facial paralysis. J Plast
Reconstr Aesthet Surg 2012; 65 (10) 1343-1349
MissingFormLabel
- 49
de Oliveira Jaeger MR,
Braga-Silva J.
End-to-end versus end-to-side motor and sensory neurorrhaphy in the repair of the
acute muscle denervation. Ann Plast Surg 2014; 73 (05) 621
MissingFormLabel
- 50
Jaeger MR,
Braga-Silva J,
Gehlen D.
et al.
End-to-end versus end-to-side motor and sensory neurorrhaphy in the repair of the
acute muscle denervation. Ann Plast Surg 2011; 67 (04) 391-396
MissingFormLabel
- 51
Ferguson LD,
Paterson T,
Ramsay F.
et al.
Applied anatomy of the latissimus dorsi free flap for refinement in one-stage facial
reanimation. J Plast Reconstr Aesthet Surg 2011; 64 (11) 1417-1423
MissingFormLabel
- 52
Leckenby JIB,
Branford OA,
Ghali S,
Grobbelaar AO.
‘Super-Innervation’ of a free latissimus dorsi flap in facial reanimation: a novel
strategy for supplementing muscle innervation. SAJ Cas Rep 2014; 1: 202
MissingFormLabel
- 53
Bittner GD,
Keating CP,
Kane JR.
et al.
Rapid, effective, and long-lasting behavioral recovery produced by microsutures, methylene
blue, and polyethylene glycol after completely cutting rat sciatic nerves. J Neurosci
Res 2012; 90 (05) 967-980
MissingFormLabel
- 54
Britt JM,
Kane JR,
Spaeth CS.
et al.
Polyethylene glycol rapidly restores axonal integrity and improves the rate of motor
behavior recovery after sciatic nerve crush injury. J Neurophysiol 2010; 104 (02)
695-703
MissingFormLabel
- 55
Hoffman AN,
Bamba R,
Pollins AC,
Thayer WP.
Analysis of polyethylene glycol (PEG) fusion in cultured neuroblastoma cells via flow
cytometry: techniques & optimization. J Clin Neurosci 2017; 36: 125-128
MissingFormLabel
- 56
Donaldson J,
Shi R,
Borgens R.
Polyethylene glycol rapidly restores physiological functions in damaged sciatic nerves
of guinea pigs. Neurosurgery 2002; 50 (01) 147-156 , discussion 156–157
MissingFormLabel
- 57
Bittner GD,
Sengelaub DR,
Trevino RC.
et al.
The curious ability of polyethylene glycol fusion technologies to restore lost behaviors
after nerve severance. J Neurosci Res 2016; 94 (03) 207-230
MissingFormLabel
- 58
Ghergherehchi CL,
Mikesh M,
Sengelaub DR.
et al.
Polyethylene glycol (PEG) and other bioactive solutions with neurorrhaphy for rapid
and dramatic repair of peripheral nerve lesions by PEG-fusion. J Neurosci Methods
2019; 314: 1-12
MissingFormLabel
- 59
Bittner GD,
Sengelaub DR,
Trevino RC,
Ghergherehchi CL,
Mikesh M.
Robinson and madison have published no data on whether polyethylene glycol fusion
repair prevents reinnervation accuracy in rat peripheral nerve. J Neurosci Res 2017;
95 (03) 863-866
MissingFormLabel
- 60
Robinson GA,
Madison RD.
Polyethylene glycol fusion repair prevents reinnervation accuracy in rat peripheral
nerve. J Neurosci Res 2016; 94 (07) 636-644
MissingFormLabel
- 61
Brown BL,
Asante T,
Welch HR.
et al.
Functional and anatomical outcomes of facial nerve injury with application of polyethylene
glycol in a rat model. JAMA Facial Plast Surg 2019; 21 (01) 61-68
MissingFormLabel
- 62
Al-Majed AA,
Neumann CM,
Brushart TM,
Gordon T.
Brief electrical stimulation promotes the speed and accuracy of motor axonal regeneration.
J Neurosci 2000; 20 (07) 2602-2608
MissingFormLabel
- 63
Brushart TM,
Jari R,
Verge V,
Rohde C,
Gordon T.
Electrical stimulation restores the specificity of sensory axon regeneration. Exp
Neurol 2005; 194 (01) 221-229
MissingFormLabel
- 64
Ahlborn P,
Schachner M,
Irintchev A.
One hour electrical stimulation accelerates functional recovery after femoral nerve
repair. Exp Neurol 2007; 208 (01) 137-144
MissingFormLabel
- 65
Lal D,
Hetzler LT,
Sharma N.
et al.
Electrical stimulation facilitates rat facial nerve recovery from a crush injury.
Otolaryngol Head Neck Surg 2008; 139 (01) 68-73
MissingFormLabel
- 66
Sharma N,
Marzo SJ,
Jones KJ,
Foecking EM.
Electrical stimulation and testosterone differentially enhance expression of regeneration-associated
genes. Exp Neurol 2010; 223 (01) 183-191
MissingFormLabel
- 67
Singh B,
Xu QG,
Franz CK.
et al.
Accelerated axon outgrowth, guidance, and target reinnervation across nerve transection
gaps following a brief electrical stimulation paradigm. J Neurosurg 2012; 116 (03)
498-512
MissingFormLabel
- 68
Witzel C,
Brushart TM,
Koulaxouzidis G,
Infanger M.
Electrical nerve stimulation enhances perilesional branching after nerve grafting
but fails to increase regeneration speed in a murine model. J Reconstr Microsurg 2016;
32 (06) 491-497
MissingFormLabel
- 69
Gordon T.
Electrical stimulation to enhance axon regeneration after peripheral nerve injuries
in animal models and humans. Neurotherapeutics 2016; 13 (02) 295-310
MissingFormLabel
- 70
Chu XL,
Song XZ,
Li Q.
et al.
Basic mechanisms of peripheral nerve injury and treatment via electrical stimulation.
Neural Regen Res 2022; 17 (10) 2185-2193
MissingFormLabel
- 71
Hoffman H.
Acceleration and retardation of the process of axon-sprouting in partially devervated
muscles. Aust J Exp Biol Med Sci 1952; 30 (06) 541-566
MissingFormLabel
- 72
Willand MP,
Nguyen MA,
Borschel GH,
Gordon T.
Electrical stimulation to promote peripheral nerve regeneration. Neurorehabil Neural
Repair 2016; 30 (05) 490-496
MissingFormLabel
- 73
Udina E,
Furey M,
Busch S,
Silver J,
Gordon T,
Fouad K.
Electrical stimulation of intact peripheral sensory axons in rats promotes outgrowth
of their central projections. Exp Neurol 2008; 210 (01) 238-247
MissingFormLabel
- 74
Huang J,
Lu L,
Hu X.
et al.
Electrical stimulation accelerates motor functional recovery in the rat model of 15-mm
sciatic nerve gap bridged by scaffolds with longitudinally oriented microchannels.
Neurorehabil Neural Repair 2010; 24 (08) 736-745
MissingFormLabel
- 75
Aglah C,
Gordon T,
Posse de Chaves EI.
cAMP promotes neurite outgrowth and extension through protein kinase A but independently
of Erk activation in cultured rat motoneurons. Neuropharmacology 2008; 55 (01) 8-17
MissingFormLabel
- 76
Huang J,
Ye Z,
Hu X,
Lu L,
Luo Z.
Electrical stimulation induces calcium-dependent release of NGF from cultured Schwann
cells. Glia 2010; 58 (05) 622-631
MissingFormLabel
- 77
Al-Majed AA,
Brushart TM,
Gordon T.
Electrical stimulation accelerates and increases expression of BDNF and trkB mRNA
in regenerating rat femoral motoneurons. Eur J Neurosci 2000; 12 (12) 4381-4390
MissingFormLabel
- 78
Willand MP,
Chiang CD,
Zhang JJ,
Kemp SW,
Borschel GH,
Gordon T.
Daily electrical muscle stimulation enhances functional recovery following nerve transection
and repair in rats. Neurorehabil Neural Repair 2015; 29 (07) 690-700
MissingFormLabel
- 79
Gordon T,
Eva P,
Borschel GH.
Delayed peripheral nerve repair: methods, including surgical ‘cross-bridging’ to promote
nerve regeneration. Neural Regen Res 2015; 10 (10) 1540-1544
MissingFormLabel
- 80
Al-Majed AA,
Tam SL,
Gordon T.
Electrical stimulation accelerates and enhances expression of regeneration-associated
genes in regenerating rat femoral motoneurons. Cell Mol Neurobiol 2004; 24 (03) 379-402
MissingFormLabel
- 81
Power HA,
Morhart MJ,
Olson JL,
Chan KM.
Postsurgical electrical stimulation enhances recovery following surgery for severe
cubital tunnel syndrome: a double-blind randomized controlled trial. Neurosurgery
2020; 86 (06) 769-777
MissingFormLabel
- 82
Barber B,
Seikaly H,
Ming Chan K.
et al.
Intraoperative Brief Electrical Stimulation of the Spinal Accessory Nerve (BEST SPIN)
for prevention of shoulder dysfunction after oncologic neck dissection: a double-blinded,
randomized controlled trial. J Otolaryngol Head Neck Surg 2018; 47 (01) 7
MissingFormLabel
- 83
Wong JN,
Olson JL,
Morhart MJ,
Chan KM.
Electrical stimulation enhances sensory recovery: a randomized controlled trial. Ann
Neurol 2015; 77 (06) 996-1006
MissingFormLabel
- 84
Naeser MA,
Hahn KA,
Lieberman BE,
Branco KF.
Carpal tunnel syndrome pain treated with low-level laser and microamperes transcutaneous
electric nerve stimulation: a controlled study. Arch Phys Med Rehabil 2002; 83 (07)
978-988
MissingFormLabel
- 85
Gordon T,
Amirjani N,
Edwards DC,
Chan KM.
Brief post-surgical electrical stimulation accelerates axon regeneration and muscle
reinnervation without affecting the functional measures in carpal tunnel syndrome
patients. Exp Neurol 2010; 223 (01) 192-202
MissingFormLabel
- 86
North M.
Weishaar J,
Leonetti JP.
Intraoperative electrical stimulation for persistent, post-traumatic facial paralysis.
Ear Nose Throat J 2023; (e-pub ahead of print).
MissingFormLabel
- 87
Costello MC,
Errante EL,
Smartz T,
Ray WZ,
Levi AD,
Burks SS.
Clinical applications of electrical stimulation for peripheral nerve injury: a systematic
review. Front Neurosci 2023; 17: 1162851
MissingFormLabel