Subscribe to RSS
DOI: 10.1055/a-2290-0536
Innovative Ausbildungstechniken für Wirbelsäulenchirurg*innen
Innovative Training Techniques for Spinal Surgeons
Zusammenfassung
Neue technologische Entwicklungen wie die Augmented Reality (AR), Virtual Reality (VR), Mixed Reality (MR) sowie hochentwickelte Simulatoren spielen eine zentrale Rolle bei der Transformation traditioneller Lernmethoden. Diese Technologien ermöglichen es, chirurgische Techniken und anatomisches Wissen in immersiven, kontrollierten Umgebungen zu erlernen, wodurch Lernende ihre Fähigkeiten risikofrei verbessern können. Gleichzeitig bieten sie Lösungen für die eingeschränkten praktischen Ausbildungsmöglichkeiten, die durch Arbeitszeitregelungen, Personalmangel und begrenzte OP-Zeiten entstanden sind.
AR ermöglicht es, digitale Informationen in Echtzeit über physische Modelle einzublenden, was ein tieferes Verständnis anatomischer Strukturen ermöglicht. VR schafft immersive, computergenerierte Umgebungen, in denen chirurgische Eingriffe realitätsnah simuliert werden können, während MR digitale und reale Welten verbindet und eine interaktive Lernumgebung schafft. Roboterassistierte Systeme und haptische Feedback-Simulatoren verstärken das Gefühl der realen Interaktion mit chirurgischen Werkzeugen. Besonders hervorzuheben ist der Einsatz von Simulatoren, die präzise chirurgische Szenarien nachstellen und leicht verfügbar sind. Diese Simulatoren erlauben es, komplexe mikrochirugische Eingriffe wie Sequestrektomien zu üben und realitätsnahe Bedingungen zu simulieren, was die Ausbildungsqualität deutlich steigert.
Die Kombination dieser Technologien hat das Potential die chirurgische Ausbildung nachhaltig zu verbessern, indem sie Lernenden mehr Flexibilität und Eigenverantwortung ermöglicht. Die Kliniken stehen vor der Aufgabe diese Technologien standardisiert in Skills-Labs oder in strukturierte Kurse zu integrieren und zu finanzieren.
Abstract
Emerging technological developments such as Augmented Reality (AR), Virtual Reality (VR), Mixed Reality (MR), and advanced simulators are playing a pivotal role in transforming traditional learning methods in neurosurgical education. These technologies enable the acquisition of surgical techniques and anatomical knowledge within immersive, controlled environments, allowing trainees to enhance their skills without risk. Concurrently, they address the limitations of practical training opportunities caused by work-hour regulations, staffing shortages, and restricted operating room availability.
AR facilitates the real-time overlay of digital information onto physical models, deepening the understanding of anatomical structures. VR creates immersive, computer-generated environments where surgical procedures can be realistically simulated, while MR integrates digital and real worlds to establish interactive learning settings. Robot-assisted systems and haptic feedback simulators enhance the tactile sensation of interacting with surgical instruments. Notably, the use of readily available simulators that accurately replicate surgical scenarios permits the rehearsal of complex microsurgical procedures, such as sequestrectomies, under realistic conditions, thereby significantly improving the quality of training.
The integration of these technologies holds the potential to sustainably advance surgical education by providing learners with greater flexibility and autonomy. It is incumbent upon clinical institutions to standardize the incorporation and funding of these technologies into skills labs or structured courses to optimize training outcomes.
Schlüsselwörter
simulationsbasiertes Training - neurochirurgische Ausbildung - virtual reality training - Technikerwerb - Weiterentwicklung technischer FähigkeitenKeywords
simulation-based education - neurosurgical residency - virtual reality training - technical skill acquisition - resident skill developmentPublication History
Article published online:
07 April 2025
© 2025. Thieme. All rights reserved.
Georg Thieme Verlag KG
Oswald-Hesse-Straße 50, 70469 Stuttgart, Germany
-
Literatur
- 1 Hickmann A-K, Ferrari A, Bozinov O. et al. Neurosurgery resident training using blended learning concepts: course development and participant evaluation. Neurosurgical Focus 2022; 53: E13
- 2 Ganju A, Aoun SG, Daou MR. et al. The role of simulation in neurosurgical education: a survey of 99 United States neurosurgery program directors. World Neurosurg 2013; 80: e1-8
- 3 Kirkman MA, Ahmed M, Albert AF. et al. The use of simulation in neurosurgical education and training. A systematic review. J Neurosurg 2014; 121: 228-246
- 4 Reznick RK, MacRae H. Teaching surgical skills--changes in the wind. N Engl J Med 2006; 355: 2664-2669
- 5 Sadideen H, Hamaoui K, Saadeddin M. et al. Simulators and the simulation environment: getting the balance right in simulation-based surgical education. Int J Surg 2012; 10: 458-462
- 6 Kim HY, Kim EY. Effects of Medical Education Program Using Virtual Reality: A Systematic Review and Meta-Analysis. Int J Environ Res Public Health 2023; 20
- 7 Gnanakumar S, Kostusiak M, Budohoski KP. et al. Effectiveness of Cadaveric Simulation in Neurosurgical Training: A Review of the Literature. World Neurosurg 2018; 118: 88-96
- 8 Paro MR, Hersh DS, Bulsara KR. History of Virtual Reality and Augmented Reality in Neurosurgical Training. World Neurosurgery 2022; 167: 37-43
- 9 Bernardo A. Virtual Reality and Simulation in Neurosurgical Training. World Neurosurg 2017; 106: 1015-1029
- 10 Lewis KO, Popov V, Fatima SS. From static web to metaverse: reinventing medical education in the post-pandemic era. Ann Med 2024; 56: 2305694
- 11 Suh I, McKinney T, Siu K-C. Current Perspective of Metaverse Application in Medical Education, Research and Patient Care. Virtual Worlds 2023; 2: 115-128
- 12 Hamilton D, McKechnie J, Edgerton E. et al. Immersive virtual reality as a pedagogical tool in education: a systematic literature review of quantitative learning outcomes and experimental design. Journal of Computers in Education 2021; 8: 1-32
- 13 McGaghie WC, Issenberg SB, Cohen ER. et al. Does simulation-based medical education with deliberate practice yield better results than traditional clinical education? A meta-analytic comparative review of the evidence. Acad Med 2011; 86: 706-711
- 14 Abe Y, Sato S, Kato K. et al. A novel 3D guidance system using augmented reality for percutaneous vertebroplasty: technical note. J Neurosurg Spine 2013; 19: 492-501
- 15 De Jesus Encarnacion Ramirez M, Chmutin G, Nurmukhametov R. et al. Integrating Augmented Reality in Spine Surgery: Redefining Precision with New Technologies. Brain Sci 2024; 14: 645
- 16 Blumstein G, Zukotynski B, Cevallos N. et al. Randomized Trial of a Virtual Reality Tool to Teach Surgical Technique for Tibial Shaft Fracture Intramedullary Nailing. J Surg Educ 2020; 77: 969-977
- 17 Anthony D, Louis RG, Shekhtman Y. et al. Patient-specific virtual reality technology for complex neurosurgical cases: illustrative cases. Journal of Neurosurgery: Case Lessons 2021; 1: CASE21114
- 18 Xin B, Huang X, Wan W. et al. The efficacy of immersive virtual reality surgical simulator training for pedicle screw placement: a randomized double-blind controlled trial. Int Orthop 2020; 44: 927-934
- 19 Adermann J, Geißler N, Bernal LE. et al. Development and validation of an artificial wetlab training system for the lumbar discectomy. European Spine Journal 2014; 23: 1978-1983
- 20 Harrop J, Rezai AR, Hoh DJ. et al. Neurosurgical training with a novel cervical spine simulator: posterior foraminotomy and laminectomy. Neurosurgery 2013; 73: 94-99
- 21 Pöser P, Schenk R, Miller H. et al. Non-cadaveric spine surgery simulator training in neurosurgical residency. North American Spine Society Journal (NASSJ) 2024; 20: 100573
- 22 Morgan M, Aydin A, Salih A. et al. Current Status of Simulation-based Training Tools in Orthopedic Surgery: A Systematic Review. J Surg Educ 2017; 74: 698-716
- 23 El-Sabagh HA. Adaptive e-learning environment based on learning styles and its impact on development students' engagement. International Journal of Educational Technology in Higher Education 2021; 18: 53
- 24 Udani AD, Macario A, Nandagopal K. et al. Simulation-based mastery learning with deliberate practice improves clinical performance in spinal anesthesia. Anesthesiol Res Pract 2014; 2014: 659160
- 25 Marcus H, Vakharia V, Kirkman MA. et al. Practice makes perfect? The role of simulation-based deliberate practice and script-based mental rehearsal in the acquisition and maintenance of operative neurosurgical skills. Neurosurgery 2013; 72: 124-130
- 26 Ericsson K, Krampe R, Tesch-Roemer C. The Role of Deliberate Practice in the Acquisition of Expert Performance. Psychological Review 1993; 100: 363-406
- 27 Wollstein Y, Jabbour N. Building Surgical Expertise Through Deliberate Practice. Ear, nose, & throat journal 2022; 101