RSS-Feed abonnieren
DOI: 10.1055/a-2290-0481
Funktionelle, bildgebende und molekulare Evaluation der zervikalen degenerativen Myelopathie
Functional, Imaging and Molecular Evaluation of Cervical Degenerative Myelopathy
Zusammenfassung
Die degenerative zervikale Myelopathie (DZM) ist eine häufige Ursache für altersbedingte Rückenmarksschädigungen. Schätzungen zufolge weisen 70–90 % der über 50- bis 60-jährigen Menschen degenerative Veränderungen der Halswirbelsäule auf. Die Alterung der Bevölkerung lässt eine Zunahme der DZM-Inzidenz erwarten, welche eine optimierte Diagnostik und Behandlung dringend erforderlich macht. Während die aktuellen AO-Spine-Leitlinien 2017 auf moderaten Evidenzniveaus basieren, zeigen neue Forschungsergebnisse wichtige Fortschritte in der bildgebenden und funktionellen Diagnostik. Techniken wie die transkranielle Magnetstimulation (TMS) und Magnetresonanzspektroskopie (MRS) erlauben tiefere Einblicke in funktionelle und metabolische Veränderungen im Gehirn, die den Krankheitsverlauf widerspiegeln. Diese Fortschritte könnten zu präziseren und auf den individuellen Verlauf abgestimmten Therapien führen. Das Behandlungskonzept und die Lebensqualität von DZM-Patienten könnte so gezielt verbessert werden.
Abstract
Degenerative cervical myelopathy (DCM) is a common cause of age-related spinal cord damage. It is estimated that 70–90% of people over the age of 50 to 60 show degenerative changes in the cervical spine. The aging of the population suggests an increase in the incidence of DCM, making optimized diagnosis and treatment urgently necessary. While the current AO Spine Guidelines 2017 are based on moderate levels of evidence, new research results show important advances in imaging and functional diagnostics. Techniques such as transcranial magnetic stimulation (TMS) and magnetic resonance spectroscopy (MRS) provide deeper insights into functional and metabolic changes in the brain that reflect the course of the disease. These advances could lead to more precise and individualized therapies. The treatment concept and quality of life of DZM patients could thus be improved in a targeted manner.
Schlüsselwörter
degenerative zervikale Myelopathie - Blut-Rückenmark-Schranken-Störung - kortikale Reservekapazität - sekundäre Schädigungsmechanismen - MyelopathieKeywords
degenerative cervical myelopathy - blood-spinal cord barrier disorder - cortical reserve capacity - secondary damage mechanisms - myelopathyPublikationsverlauf
Artikel online veröffentlicht:
07. April 2025
© 2025. Thieme. All rights reserved.
Georg Thieme Verlag KG
Oswald-Hesse-Straße 50, 70469 Stuttgart, Germany
-
Literatur
- 1 Fehlings MG, Tetreault LA, Wilson JR. et al. Cervical Spondylotic Myelopathy. Spine 2013; 38: S1-S8
- 2 Lawrence BD, Shamji MF, Traynelis VC. et al. Surgical Management of Degenerative Cervical Myelopathy. Spine 2013; 38: S171-S172
- 3 Tracy JA, Bartleson JD. Cervical Spondylotic Myelopathy. Neurologist 2010; 16: 176-187
- 4 Fehlings MG, Tetreault L, Nater A. et al. The Aging of the Global Population: The Changing Epidemiology of Disease and Spinal Disorders. Neurosurgery 2015; 77: S1-S5
- 5 Hsu WK, Kannan A, Mai HT. et al. A Clinical Practice Guideline for the Management of Degenerative Cervical Myelopathy: Introduction, Rationale, and Scope. Global Spine J 2017; 7: 21S-27S
- 6 Fehlings MG, Tetreault LA, Riew KD. et al. A Clinical Practice Guideline for the Management of Patients With Degenerative Cervical Myelopathy: Recommendations for Patients With Mild, Moderate, and Severe Disease and Nonmyelopathic Patients With Evidence of Cord Compression. Global Spine J 2017; 7: 70S-83S
- 7 Yonenobu K, Abumi K, Nagata K. et al. Interobserver and Intraobserver Reliability of the Japanese Orthopaedic Association Scoring System for Evaluation of Cervical Compression Myelopathy. Spine 2001; 26: 1890-1894
- 8 Aleksanderek I, McGregor SMK, Stevens TK. et al. Cervical Spondylotic Myelopathy: Metabolite Changes in the Primary Motor Cortex after Surgery. Radiology 2016; 282: 817-825
- 9 Kowalczyk I, Duggal N, Bartha R. Proton magnetic resonance spectroscopy of the motor cortex in cervical myelopathy. Brain 2012; 135: 461-468
- 10 Gohmann RF, Blume C, Zvyagintsev M. et al. Cervical spondylotic myelopathy: changes of fractional anisotropy in the spinal cord and magnetic resonance spectroscopy of the primary motor cortex in relation to clinical symptoms and their duration. Eur J Radiol 2019;
- 11 Freund P, Weiskopf N, Ward NS. et al. Disability, atrophy and cortical reorganization following spinal cord injury. Brain J Neurology 2011; 134: 1610-1622
- 12 Wang L, Yu B, Li Q. et al. Sensorimotor cortex atrophy in patients with cervical spondylotic myelopathy. Neuroreport 2018; 29: 826-832
- 13 Jütten K, Mainz V, Schubert GA. et al. Cortical volume reductions as a sign of secondary cerebral and cerebellar impairment in patients with degenerative cervical myelopathy. Neuroimage Clin 2021; 30
- 14 Ramanauskas WL, Wilner HI, Metes JJ. et al. MR Imaging of Compressive Myelomalacia. J Comput Assist Tomogr 1989; 13: 399-404
- 15 Matsuda Y, Miyazaki K, Tada K. et al. Increased MR signal intensity due to cervical myelopathy: Analysis of 29 surgical cases. J Neurosurg 1991; 74: 887-892
- 16 Noble LJ, Wrathall JR. Blood-spinal cord barrier disruption proximal to a spinal cord transection in the rat: Time course and pathways associated with protein leakage. Exp Neurol 1988; 99: 567-578
- 17 Popovich PG, Horner PJ, Mullin BB. et al. A Quantitative Spatial Analysis of the Blood–Spinal Cord Barrier I. Permeability Changes after Experimental Spinal Contusion Injury. Exp Neurol 1996; 142: 258-275
- 18 Noble LJ, Wrathall JR. Distribution and time course of protein extravasation in the rat spinal cord after contusive injury. Brain Res 1989; 482: 57-66
- 19 Donnelly DJ, Popovich PG. Inflammation and its role in neuroprotection, axonal regeneration and functional recovery after spinal cord injury. Exp Neurol 2008; 209: 378-388
- 20 Tator CH, Fehlings MG. Review of the secondary injury theory of acute spinal cord trauma with emphasis on vascular mechanisms. J Neurosurg 1991; 75: 15-26
- 21 Blume C, Geiger MF, Brandenburg LO. et al. Patients with degenerative cervical myelopathy have signs of blood spinal cord barrier disruption, and its magnitude correlates with myelopathy severity: a prospective comparative cohort study. Eur Spine J 2020; 29: 986-993
- 22 Reiber H. Cerebrospinal fluid - physiology, analysis and interpretation of protein patterns for diagnosis of neurological diseases. Mult Scler 1998; 4: 99-107
- 23 Reiber H. Flow rate of cerebrospinal fluid (CSF) — A concept common to normal blood-CSF barrier function and to dysfunction in neurological diseases. J Neurol Sci 1994; 122: 189-203
- 24 Schmidt TP, Jütten K, Bertram U. et al. Blood spinal cord barrier disruption recovers in patients with degenerative cervical myelopathy after surgical decompression: a prospective cohort study. Sci Rep 2023; 13: 7389
- 25 Karadimas SK, Moon ES, Yu W-R. et al. A novel experimental model of cervical spondylotic myelopathy (CSM) to facilitate translational research. Neurobiol Dis 2013; 54: 43-58
- 26 Karadimas SK, Gatzounis G, Fehlings MG. Pathobiology of cervical spondylotic myelopathy. Eur Spine J 2015; 24: 132-138
- 27 Human and animal model evidence supporting a role for Cx3cr1. Mediating the inflammatory response in cervical spondylotic myelopathy. Abstract presented at the 2012 Society for Neuroscience Meeting in October, New Orleans, Society of neuroscience 2012.
- 28 Beattie MS, Manley GT. Tight squeeze, slow burn: inflammation and the aetiology of cervical myelopathy. Brain 2011; 134: 1259-1261
- 29 Crowe MJ, Bresnahan JC, Shuman SL. et al. Apoptosis and delayed degeneration after spinal cord injury in rats and monkeys. Nat Med 1997; 3: 73-76
- 30 Blume C, Geiger MF, Müller M. et al. Decreased angiogenesis as a possible pathomechanism in cervical degenerative myelopathy. Sci Rep-uk 2021; 11: 2497
- 31 Hook MA, Washburn SN, Moreno G. et al. An IL-1 receptor antagonist blocks a morphine-induced attenuation of locomotor recovery after spinal cord injury. Brain Behav Immun 2010; 25: 349-359
- 32 Simi A, Tsakiri N, Wang P. et al. Interleukin-1 and inflammatory neurodegeneration. Biochem Soc T 2007; 35: 1122-1126
- 33 Krammer PH. CD95’s deadly mission in the immune system. Nature 2000; 407: 789-795
- 34 Yu WR, Liu T, Kiehl T-R. et al. Human neuropathological and animal model evidence supporting a role for Fas-mediated apoptosis and inflammation in cervical spondylotic myelopathy. Brain 2011; 134: 1277-1292