Klin Monbl Augenheilkd 2024; 241(04): 533-537
DOI: 10.1055/a-2237-3814
Übersicht

The Use of the RETeval Portable Electroretinography Device for Low-Cost Screening: A Mini-Review

Der Einsatz des tragbaren Elektroretinografiegeräts RETeval für ein kostengünstiges Screening: ein Mini-Review
1   Ophthalmology, Stadtspital Zürich Triemli, Zürich, Switzerland
,
Ferhat Turgut
1   Ophthalmology, Stadtspital Zürich Triemli, Zürich, Switzerland
2   Ophthalmology, Gutblick, Pfäffikon, Switzerland
,
Chiara Sommer
1   Ophthalmology, Stadtspital Zürich Triemli, Zürich, Switzerland
,
Matthias Becker
1   Ophthalmology, Stadtspital Zürich Triemli, Zürich, Switzerland
,
Delia DeBuc
3   Bascom Palmer Eye Institute, University of Miami School of Medicine, Miami, Florida, United States
,
Mirella Barboni
4   Department of Ophthalmology, Semmelweis University, Budapest, Hungary
,
1   Ophthalmology, Stadtspital Zürich Triemli, Zürich, Switzerland
4   Department of Ophthalmology, Semmelweis University, Budapest, Hungary
› Author Affiliations

Abstract

Electroretinography (ERG) provides crucial insights into retinal function and the integrity of the visual pathways. However, ERG assessments classically require a complicated technical background with costly equipment. In addition, the placement of corneal or conjunctival electrodes is not always tolerated by the patients, which restricts the measurement for pediatric evaluations. In this short review, we give an overview of the use of the RETeval portable ERG device (LKC Technologies, Inc., Gaithersburg, MD, USA), a modern portable ERG device that can facilitate screening for diseases involving the retina and the optic nerve. We also review its potential to provide ocular biomarkers in systemic pathologies, such as Alzheimerʼs disease and central nervous system alterations, within the framework of oculomics.

Zusammenfassung

Die Elektroretinografie (ERG) liefert wichtige Erkenntnisse über die Funktion der Netzhaut und die Integrität der Sehbahnen. Allerdings erfordern ERG-Untersuchungen i. d. R. einen komplizierten technischen Hintergrund und kostspielige Geräte. Darüber hinaus wird das Anbringen von Hornhaut- oder Bindehautelektroden von den Patienten nicht immer toleriert, was die Messungen bei pädiatrischen Untersuchungen einschränkt. In dieser kurzen Übersicht geben wir einen Überblick über die Verwendung des tragbaren ERG-Geräts RETeval (LKC Technologies, Inc., Gaithersburg, MD, USA), eines modernen tragbaren ERG-Geräts, das das Screening auf Erkrankungen der Netzhaut und des Sehnervs erleichtern kann. Wir prüfen auch sein Potenzial, okulare Biomarker (Oculomics) für systemische Pathologien wie die Alzheimer-Krankheit und Veränderungen des zentralen Nervensystems zu liefern.



Publication History

Received: 21 October 2023

Accepted: 13 December 2023

Article published online:
23 April 2024

© 2024. Thieme. All rights reserved.

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

  • 1 Brown KT. The electroretinogram: its components and their origins. Vision Res 1968; 8: 633-677
  • 2 Robson AG, Frishman LJ, Grigg J. et al. ISCEV Standard for full-field clinical electroretinography (2022 update). Doc Ophthalmol 2022; 144: 165-177
  • 3 Sakti DH, Ali H, Korsakova M. et al. Electronegative electroretinogram in the modern multimodal imaging era. Clin Exp Ophthalmol 2022; 50: 429-440
  • 4 Ng JS, Bearse jr. MA, Schneck ME. et al. Local diabetic retinopathy prediction by multifocal ERG delays over 3 years. Invest Ophthalmol Vis Sci 2008; 49: 1622-1628
  • 5 Pescosolido N, Barbato A, Stefanucci A. et al. Role of Electrophysiology in the Early Diagnosis and Follow-Up of Diabetic Retinopathy. J Diabetes Res 2015; 2015: 319692
  • 6 Wilsey LJ, Fortune B. Electroretinography in glaucoma diagnosis. Curr Opin Ophthalmol 2016; 27: 118-124
  • 7 Asi H, Perlman I. Relationships between the electroretinogram a-wave, b-wave and oscillatory potentials and their application to clinical diagnosis. Doc Ophthalmol 1992; 79: 125-139
  • 8 Mahroo OA. Visual electrophysiology and “the potential of the potentials”. Eye (Lond) 2023; 37: 2399-2408
  • 9 You JY, Dorfman AL, Gauvin M. et al. Comparing the RETeval® portable ERG device with more traditional tabletop ERG systems in normal subjects and selected retinopathies. Doc Ophthalmol 2023; 146: 137-150
  • 10 Chen D, Greenstein VC, Brodie SE. Qualitative and quantitative comparison of ERGs with contact lens and adhesive skin electrodes. Doc Ophthalmol 2022; 144: 203-215
  • 11 Carter P, Gordon-Reid A, Shawkat F. et al. Comparison of the handheld RETeval ERG system with a routine ERG system in healthy adults and in paediatric patients. Eye (Lond) 2021; 35: 2180-2189
  • 12 Liu H, Ji X, Dhaliwal S. et al. Evaluation of light- and dark-adapted ERGs using a mydriasis-free, portable system: clinical classifications and normative data. Doc Ophthalmol 2018; 137: 169-181
  • 13 Kong AW, Turner ML, Chan H. et al. Asymmetric Functional Impairment of ON and OFF Retinal Pathways in Glaucoma. Ophthalmol Sci 2021; 1: 100026
  • 14 Wagner SK, Fu DJ, Faes L. et al. Insights into Systemic Disease through Retinal Imaging-Based Oculomics. Transl Vis Sci Technol 2020; 9: 6
  • 15 Bach M, Poloschek CM. Electrophysiology and glaucoma: current status and future challenges. Cell Tissue Res 2013; 353: 287-296
  • 16 Stiefelmeyer S, Neubauer AS, Berninger T. et al. The multifocal pattern electroretinogram in glaucoma. Vision Res 2004; 44: 103-112
  • 17 Sarossy M, Crowston J, Kumar D. et al. Prediction of glaucoma severity using parameters from the electroretinogram. Sci Rep 2021; 11: 23886
  • 18 Preiser D, Lagrèze WA, Bach M. et al. Photopic negative response versus pattern electroretinogram in early glaucoma. Invest Ophthalmol Vis Sci 2013; 54: 1182-1191
  • 19 Wu Z, Hadoux X, Hui F. et al. Photopic Negative Response Obtained Using a Handheld Electroretinogram Device: Determining the Optimal Measure and Repeatability. Transl Vis Sci Technol 2016; 5: 8
  • 20 Tang J, Hui F, Hadoux X. et al. A Comparison of the RETeval Sensor Strip and DTL Electrode for Recording the Photopic Negative Response. Transl Vis Sci Technol 2018; 7: 27
  • 21 Hidaka T, Chuman H, Ikeda Y. Evaluation of inner retinal function at different stages of primary open angle glaucoma using the photopic negative response (PhNR) measured by RETeval electroretinography. Graefes Arch Clin Exp Ophthalmol 2024; 262: 161-169
  • 22 Hu FB. Globalization of diabetes: the role of diet, lifestyle, and genes. Diabetes Care 2011; 34: 1249-1257
  • 23 Standl E, Khunti K, Hansen TB. et al. The global epidemics of diabetes in the 21st century: Current situation and perspectives. Eur J Prev Cardiol 2019; 26(2_suppl): 7-14
  • 24 Khan MAB, Hashim MJ, King JK. et al. Epidemiology of Type 2 Diabetes – Global Burden of Disease and Forecasted Trends. J Epidemiol Glob Health 2020; 10: 107-111
  • 25 Benoit SR, Swenor B, Geiss LS. et al. Eye Care Utilization Among Insured People With Diabetes in the U.S., 2010–2014. Diabetes Care 2019; 42: 427-433
  • 26 Digital N. Hospital Outpatient Activity 2019-20. NHS Digital. Accessed February 9, 2024 at: https://digital.nhs.uk/data-and-information/publications/statistical/hospital-outpatient-activity/2019-20
  • 27 Tzekov R, Arden GB. The electroretinogram in diabetic retinopathy. Surv Ophthalmol 1999; 44: 53-60
  • 28 Yonemura D, Aoki T, Tsuzuki K. Electroretinogram in diabetic retinopathy. Arch Ophthal 1962; 68: 19-24
  • 29 Fortune B, Schneck ME, Adams AJ. Multifocal electroretinogram delays reveal local retinal dysfunction in early diabetic retinopathy. Invest Ophthalmol Vis Sci 1999; 40: 2638-2651
  • 30 Al-Otaibi H, Al-Otaibi MD, Khandekar R. et al. Validity, Usefulness and Cost of RETeval System for Diabetic Retinopathy Screening. Transl Vis Sci Technol 2017; 6: 3
  • 31 Maa AY, Feuer WJ, Davis CQ. et al. A novel device for accurate and efficient testing for vision-threatening diabetic retinopathy. J Diabetes Complications 2016; 30: 524-532
  • 32 Değirmenci MFK, Demirel S, Batıoğlu F. et al. Role of a mydriasis-free, full-field flicker ERG device in the detection of diabetic retinopathy. Doc Ophthalmol 2018; 137: 131-141
  • 33 Brigell MG, Chiang B, Maa AY. et al. Enhancing Risk Assessment in Patients with Diabetic Retinopathy by Combining Measures of Retinal Function and Structure. Transl Vis Sci Technol 2020; 9: 40
  • 34 Brady CJ, DʼAmico S, Campbell JP. Telemedicine for Retinopathy of Prematurity. Telemed J E Health 2020; 26: 556-564
  • 35 Fulton AB, Hansen RM, Moskowitz A. The cone electroretinogram in retinopathy of prematurity. Invest Ophthalmol Vis Sci 2008; 49: 814-819
  • 36 Fulton AB, Hansen RM, Petersen RA. et al. The rod photoreceptors in retinopathy of prematurity: an electroretinographic study. Arch Ophthalmol 2001; 119: 499-505
  • 37 Hansen RM, Moskowitz A, Akula JD. et al. The neural retina in retinopathy of prematurity. Prog Retin Eye Res 2017; 56: 32-57
  • 38 Hamilton R, Dudgeon J, Bradnam MS. et al. Development of the electroretinogram between 30 and 50 weeks after conception. Early Hum Dev 2005; 81: 461-464
  • 39 Hamilton R, Bradnam MS, Dudgeon J. et al. Maturation of rod function in preterm infants with and without retinopathy of prematurity. J Pediatr 2008; 153: 605-611
  • 40 Tekavčič Pompe M, Šuštar M. Flicker electroretinogram recorded with portable ERG device in prematurely born schoolchildren with and without ROP. Doc Ophthalmol 2019; 139: 59-65
  • 41 Asakawa K, Ishikawa H. Electroretinography and Pupillography in Unilateral Foveal Hypoplasia. J Pediatr Ophthalmol Strabismus 2016; 53 Online: e26-e28
  • 42 McCulloch D, Mactier H, Farrell L. et al. ARVO Annual Meeting Abstract: Luminance-response functions for light-adapted electroretinograms (ERGs) in preterm infants at risk of retinopathy of prematurity (ROP). Invest Ophthalmol Vis Sci 2013; 54: 602
  • 43 Hanson JVM, Weber C, Pfäffli OA. et al. Flicker electroretinogram in newborn infants. Doc Ophthalmol 2022; 145: 175-184
  • 44 Cabrera DeBuc D, Somfai GM, Arthur E. et al. Investigating Multimodal Diagnostic Eye Biomarkers of Cognitive Impairment by Measuring Vascular and Neurogenic Changes in the Retina. Front Physiol 2018; 9: 1721
  • 45 Demmin DL, Davis Q, Roché M. et al. Electroretinographic anomalies in schizophrenia. J Abnorm Psychol 2018; 127: 417-428
  • 46 Demmin DL, Mote J, Beaudette DM. et al. Retinal functioning and reward processing in schizophrenia. Schizophr Res 2020; 219: 25-33
  • 47 Demmin DL, Netser R, Roché MW. et al. People with current major depression resemble healthy controls on flash Electroretinogram indices associated with impairment in people with stabilized schizophrenia. Schizophr Res 2020; 219: 69-76
  • 48 Kazakos CT, Karageorgiou V. Retinal Changes in Schizophrenia: A Systematic Review and Meta-analysis Based on Individual Participant Data. Schizophr Bull 2020; 46: 27-42
  • 49 Manjur SM, Hossain MB, Constable PA. et al. Detecting Autism Spectrum Disorder Using Spectral Analysis of Electroretinogram and Machine Learning: Preliminary results. Annu Int Conf IEEE Eng Med Biol Soc 2022; 2022: 3435-3438
  • 50 Lee IO, Skuse DH, Constable PA. et al. The electroretinogram b-wave amplitude: a differential physiological measure for Attention Deficit Hyperactivity Disorder and Autism Spectrum Disorder. J Neurodev Disord 2022; 14: 30
  • 51 Constable PA, Marmolejo-Ramos F, Gauthier M. et al. Discrete Wavelet Transform Analysis of the Electroretinogram in Autism Spectrum Disorder and Attention Deficit Hyperactivity Disorder. Front Neurosci 2022; 16: 890461
  • 52 Wylegala A. The Effects of Physical Exercises on Ocular Physiology: A Review. J Glaucoma 2016; 25: e843-e849
  • 53 Zwierko T, Czepita D, Lubiński W. The effect of physical effort on retinal activity in the human eye: rod and cone flicker electroretinogram studies. Graefes Arch Clin Exp Ophthalmol 2010; 248: 659-666