Subscribe to RSS
DOI: 10.1055/a-2197-3616
Auswirkung von Künstlicher Intelligenz auf den Beruf der MTR
The Impact of Artificial Intelligence on the Radiology Technologist Profession
Dieser Artikel befasst sich mit den Auswirkungen der Künstlichen Intelligenz (KI) auf den Beruf der Medizinischen Technologinnen und Technologen für Radiologie (MTR). Die KI könnte entlang des Patientenbehandlungspfades in sämtlichen Bereichen der Radiologie MTR unterstützen und entlasten. Durch KI könnte sich der MTR-Beruf in Tätigkeitsbereiche unterteilen, die sich in patientennahe und patientenferne Tätigkeiten gliedern. In Zukunft könnten MTR, die Expertise im Bereich von KI besitzen, supervisorische Tätigkeiten ausführen, während MTR, die sich nicht mit KI beschäftigen, patientennahe Tätigkeiten wie die Betreuung und Lagerung von Patienten durchführen. Es ist absehbar, dass KI in naher Zukunft einige Aufgaben der MTR übernehmen wird und in ferner Zukunft autonom Untersuchungen durchführen wird. Um den Beruf des MTR zukunftsfähig zu gestalten, sollten MTR eine Strategie entwickeln und aktiv an der Entwicklung mitwirken.
Abstract
This article explores the impact of artificial intelligence (AI) on radiology technology, focusing on the changing roles and responsibilities of radiology technologists due to technological advancements. The introduction of AI-driven diagnostic tools has improved the efficiency and precision of medical imaging, allowing radiology technologists to streamline their workflow. This article examines the relationship between radiology technologists and AI, highlighting the significance of skill adaptation and professional development. Additionally, it discusses the impact of AI on the job market for radiology technologists, exploring how automation may reshape the profession. The study emphasizes the importance of the human touch in patient care and the interpretative nuances that AI may struggle to comprehend. Radiology technologists play a crucial role in developing, validating, and optimizing AI algorithms to ensure they align seamlessly with the complexities of medical imaging. This article highlights the dynamic relationship between radiology technologists and artificial intelligence, emphasizing the symbiosis between human expertise and technological innovation. As artificial intelligence (AI) continues to advance, radiology technologists must adapt their skills to embrace the opportunities for improved efficiency, while maintaining a commitment to ethical practice and patient-centered care.
Schlüsselwörter
Künstliche Intelligenz - Maschinelles Lernen - Deep Learning - MTR - ZukunftsfähigkeitKey word
Artificial intelligence - machine learning - deep learning - radiology technologist - future skillsPublication History
Article published online:
31 May 2024
© 2024. Thieme. All rights reserved.
Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart,
Germany
-
Literatur
- 1 McKinney SM, Sieniek M, Godbole V. et al. International evaluation of an AI system for breast cancer screening. Nature 2020; 577: 89-94
- 2 Esteva A, Kuprel B, Novoa RA. et al. Dermatologist-level classification of skin cancer with deep neural networks. Nature 2017; 542: 115-118
- 3 Kahn CE. Artificial Intelligence, Real Radiology. Radiol Artif Intell 2019; 1: e184001
- 4 Nensa F, Demircioglu A, Rischpler C. Artificial Intelligence in Nuclear Medicine. J Nucl Med 2019; 60: 29S-37S
- 5 Hosny A, Parmar C, Quackenbush J. et al. Artificial intelligence in radiology. Nat Rev Cancer 2018; 18: 500-510
- 6 Choy G, Khalilzadeh O, Michalski M. et al. Current Applica-tions and Future Impact of Machine Learning in Radiology. Radiology 2018; 288: 318-328
- 7 Quinsten AS, Umutlu L, Forsting M. et al. Determining the anatomical site in knee radiographs using deep learning. Sci Rep 2022; 12: 1-8
- 8 Pesapane F, Codari M, Sardanelli F. Artificial intelligence in medical imaging: threat or opportunity? Radiologists again at the forefront of innovation in medicine. Eur Radiol Exp 2018; 2: 35
- 9 Demircioğlu A, Stein MC, Kim MS. et al. Detecting the pulmonary trunk in CT scout views using deep learning. Sci Rep 2021; 11: 10215
- 10 Harvey HB, Liu C, Ai J. et al. Predicting No-Shows in Radiology Using Regression Modeling of Data Available in the Electronic Medical Record. J Am Coll Radiol 2017; 14: 1303-1309
- 11 Booij R, Budde RPJ, Dijkshoorn ML. et al. Accuracy of automated patient positioning in CT using a 3D camera for body contour detection. Eur Radiol 2019; 29: 2079-2088
- 12 Haubold J, Demircioglu A, Theysohn JM. et al. Generating Virtual Short Tau In-version Recovery (STIR) Images from T1- and T2-Weighted Images Using a Conditional Generative Adversarial Network in Spine Imaging. Diagnostics (Basel) 2021; 11: 1542
- 13 Shi F, Wang J, Shi J. et al. Review of Artificial Intelligence Techniques in Imaging Data Acquisition, Segmentation, and Diagnosis for COVID-19. IEEE Rev Biomed Eng 2021; 14: 4-15
- 14 Hardy M, Harvey H. Artificial intelligence in diagnostic imaging: impact on the radiography profession. Br J Radiol 2020; 93: 20190840
- 15 Malamateniou C, Knapp KM, Pergola M. et al. Artificial intelligence in radiography: Where are we now and what does the future hold?. Radiography (Lond.) 2021; 27: S58-S62
- 16 International Society of Radiographers and Radiological Technologists and The European Federation of Radiographer Societies. Artificial Intelligence and the Radiographer/Radiological Technologist Profession. Artificial Intelligence and the Radiographer/Radiological Technologist Profession: A joint statement of the International Society of Radiographers and Radiological Technologists and the European Federation of Radiographer Societies. Radiography (Lond.) 2020; 26: 93-95
- 17 Malamateniou C, McFadden S, McQuinlan Y. et al. Artificial Intelligence: Guidance for clinical imaging and therapeutic radiography professionals, a summary by the Society of Radiographers AI working group. Radiography (Lond.) 2021; 27: 1192-1202
- 18 Cohen JP, Luck M, Honari S. (2018). How to Cure Cancer (in images) with Un-paired Image Translation. Im Internet: https://openreview.net/forum?id=SJIA3pijM Stand: 13.03.2024
- 19 Haubold J. Künstliche Intelligenz in der Radiologie. Radiologe 2020; 60: 64-69
- 20 Brink JA, Arenson RL, Grist TM. et al. Bits and bytes: the future of radiology lies in informatics and information technology. Eur Radiol 2017; 27: 3647-3651