Subscribe to RSS
DOI: 10.1055/a-2160-3024
Klimawandel und vektorübertragene Infektionen in EuropaTeil 1: Überblick und mückenübertragene Infektionen
Climate change and vector-borne infections in EuropePart 1: Overview and mosquito borne infections
ZUSAMMENFASSUNG
Der Klimawandel, globale Umweltveränderungen und die Globalisierung führen weltweit aufgrund von Veränderungen der Verbreitungsgebiete, vermehrten Spillover-Ereignissen und einem gesteigerten Übertragungsrisiko zu einer Zunahme mancher Infektionskrankheiten. Besonders vektorübertragene Krankheiten sind betroffen, da sich Vektor- und Wirtspopulationen den sich ändernden Bedingungen anpassen. Steigende Temperaturen und eine Zunahme der Luftfeuchtigkeit begünstigen vielfach die Vermehrung von u. a. Zecken und Mücken, was das Risiko für Dengue-, Zika-, West-Nil- und Chikungunya-Virus-Infektionen sowie Borreliose und Frühsommer-Meningoenzephalitis (FSME) in Europa erhöht. Auch Sandmücken, die Leishmaniose übertragen, breiten sich verstärkt in Mittelmeerländern aus. Angesichts des wachsenden Infektionsrisikos verschiedener Erkrankungen sind verstärkte Maßnahmen zur Prävention und Überwachung von vektorübertragenen Infektionskrankheiten in Europa geboten.
ABSTRACT
Climate change, global environmental changes and globalisation are leading to an increase in some infectious diseases due to changes in the geographic distribution of pathogens, increased spillover events, and resulting higher transmission risk for some infectious diseases. Some vector-borne diseases are particularly affected, as vector and host populations may adapt to changing environmental conditions. Rising temperatures and an increased air humidity promote the proliferation of e. g. ticks and mosquitoes, increasing in some regions the risk of Dengue, Zika, West Nile and Chikungunya virus infection, Lyme disease, and Tick-borne encephalitis (TBE) in Europe. Sandflies, which transmit leishmaniasis, are also expanding their presence in several Mediterranean countries. Given this increasing risk for transmission of various infectious diseases, enhanced measures for the prevention and surveillance of these vector-borne infectious diseases are essential in Europe.
Publication History
Article published online:
06 October 2023
© 2023. Thieme. All rights reserved.
Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany
-
Literatur
- 1 McIntyre KM, Setzkorn C, Hepworth PJ. et al Systematic Assessment of the Climate Sensitivity of Important Human and Domestic Animals Pathogens in Europe. Sci Rep 2017; 07: 7134
- 2 World Meterological Organization. State of the Climate in Europe 2022 (12-07-2023). Im Internet https://community.wmo.int/en/news/wmos-state-climate-europe-report-2022-urges-immediate-action-europes-climate-crisis
- 3 Deutscher Wetterdienst. Klimawandel – ein Überblick (13.09.2023). Im Internet https://www.dwd.de/DE/klimaumwelt/klimawandel/ueberblick/ueberblick_node.html
- 4 Mora C, McKenzie T, Gaw IM. et al Over half of known human pathogenic diseases can be aggravated by climate change. Nat Clim Chang 2022; 12: 869-875
- 5 Nava A, Shimabukuro JS, Chmura AA. et al The Impact of Global Environmental Changes on Infectious Disease Emergence with a Focus on Risks for Brazil. ILAR J 2017; 58: 393-400
- 6 Loaiza-Ceballos MC, Marin-Palma D, Zapata W. et al Viral respiratory infections and air pollutants. Air Qual Atmos Health 2022; 15: 105-114
- 7 Thangavel P, Park D, Lee YC. Recent Insights into Particulate Matter (PM2.5) – Mediated Toxicity in Humans: An Overview. Int J Environ Res Public Health 2022; 19: 7511
- 8 Cunze S, Klimpel S.. Vektorassoziierte Infektionskrankheiten im Klimawandel. Im Internet https://dntds.de/publikationen.html
- 9 Hemmer CJ, Emmerich P, Loebermann M. et al Mücken und Zecken als Krankheitsvektoren: der Einfluss der Klimaerwärmung. Dtsch Med Wochenschr 2018; 143: 1714-1722
- 10 Mellor PS, Leake CJ. Climatic and geographic influences on arboviral infections and vectors. Rev Sci Tech 2000; 19: 41-54
- 11 Beermann S, Dobler G, Faber M. et al Auswirkungen von Klimaveränderungen auf Vektor- und Nagetierassoziierte Infektionskrankheiten. J Health Monit 08 (03) 36-66
- 12 Ewing DA, Cobbold CA, Purse BV. et al Modelling the effect of temperature on the seasonal population dynamics of temperate mosquitoes. J Theor Biol 2016; 400: 65-79
- 13 Acquaotta F, Fratianni S, Garzena D. Temperature changes in the North-Western Italian Alps from 1961 to 2010. Theor Appl Climatol 2015; 122: 619-634
- 14 Garcia-Vozmediano A, Krawczyk AI, Sprong H. et al Ticks climb the mountains: Ixodid tick infestation and infection by tick-borne pathogens in the Western Alps. Ticks Tick Borne Dis 2020; 11: 101489
- 15 Daniel M, Materna J, Honig V. et al Vertical distribution of the tick Ixodes ricinus and tick-borne pathogens in the northern Moravian mountains correlated with climate warming (Jeseníky Mts., Czech Republic). Cent Eur J Public Health 2009; 17: 139-145
- 16 Kulkarni MA, Duguay C, Ost K. Charting the evidence for climate change impacts on the global spread of malaria and dengue and adaptive responses: a scoping review of reviews. Global Health 2022; 18: 1
- 17 Ebert B, Fleischer B. Globale Erwärmung und Ausbreitung von Infektionskrankheiten. Bundesgesundheitsblatt Gesundheitsforschung Gesundheitsschutz 2005; 48: 55-62
- 18 Kampen H, Tews BA, Werner D. First Evidence of West Nile Virus Overwintering in Mosquitoes in Germany. Viruses 2021; 13: 2463
- 19 Brown JJ, Pascual M, Wimberly MC. et al Humidity – The overlooked variable in the thermal biology of mosquito-borne disease. Ecol Lett 2023; 26: 1029-1049
- 20 Bellini R, Michaelakis A, Petrić D. et al Practical management plan for invasive mosquito species in Europe: I. Asian tiger mosquito (Aedes albopictus). Travel Med Infect Dis 2020; 35: 101691
- 21 Powell JR, Tabachnick WJ. History of domestication and spread of Aedes aegypti – a review. Mem Inst Oswaldo Cruz 2013; 108 (Suppl. 01) 11-17
- 22 Da Re D, Montecino-Latorre D, Vanwambeke SO. et al Will the yellow fever mosquito colonise Europe? Assessing the re-introduction of Aedes aegypti using a process-based population dynamical model. Ecological Informatics 2021; 61: 101180
- 23 ECDC. Aedes aegypti – Factsheet for experts (02.01.2023). Im Internet. https://www.ecdc.europa.eu/en/disease-vectors/facts/mosquito-factsheets/aedes-aegypti Stand: 14.08.2023
- 24 Oliveira S, Rocha J, Sousa CA. et al Wide and increasing suitability for Aedes albopictus in Europe is congruent across distribution models. Sci Rep 2021; 11: 9916
- 25 Cunze S, Glock G, Kochmann J. et al Ticks on the move-climate change-induced range shifts of three tick species in Europe: current and future habitat suitability for Ixodes ricinus in comparison with Dermacentor reticulatus and Dermacentor marginatus. Parasitol Res 2022; 121: 2241-2252
- 26 ECDC. Aedes albopictus – current known distribution: February 2023. Im Internet https://www.ecdc.europa.eu/en/publications-data/aedes-albopictus-current-known-distribution-february-2023
- 27 Mordecai EA, Cohen JM, Evans MV. et al Detecting the impact of temperature on transmission of Zika, dengue, and chikungunya using mechanistic models. PLoS Negl Trop Dis 2017; 11: e0005568
- 28 Brady OJ, Johansson MA, Guerra CA. et al Modelling adult Aedes aegypti and Aedes albopictus survival at different temperatures in laboratory and field settings. Parasit Vectors 2013; 06: 351
- 29 Kramer IM, Kreß A, Klingelhöfer D. et al Does winter cold really limit the dengue vector Aedes aegypti in Europe?. Parasit Vectors 2020; 13: 178
- 30 Li C, Wu X, Sheridan S. et al Interaction of climate and socio-ecological environment drives the dengue outbreak in epidemic region of China. PLOS Negl Trop Dis 2021; 15: e0009761
- 31 WHO. Dengue and severe dengue (17 March 2023). Im Internet. https://www.who.int/news-room/fact-sheets/detail/dengue-and-severe-dengue Stand: 10.08.2023
- 32 Schaffner F, Mathis A. Dengue and dengue vectors in the WHO European region: past, present, and scenarios for the future. Lancet Infect Dis 2014; 14: 1271-1280
- 33 Bhatt S, Gething PW, Brady OJ. et al The global distribution and burden of dengue. Nature 2013; 496: 504-507
- 34 Rocklöv J, Tozan Y. Climate change and the rising infectiousness of dengue. Emerg Top Life Sci 2019; 03: 133-142
- 35 Damtew YT, Tong M, Varghese BM. et al Effects of high temperatures and heatwaves on dengue fever: a systematic review and meta-analysis. EBioMedicine 2023; 91: 104582
- 36 ECDC. Increasing risk of mosquito-borne diseases in EU/EEA following spread of Aedes species (22 Jun 2023). Im Internet https://www.ecdc.europa.eu/en/news-events/increasing-risk-mosquito-borne-diseases-eueea-following-spread-aedes-species
- 37 ECDC. Autochthonous vectorial transmission of dengue virus in mainland EU/EEA, 2010-present. Im Internet. https://www.ecdc.europa.eu/en/all-topics-z/dengue/surveillance-and-disease-data/autochthonous-transmission-dengue-virus-eueea Stand: 12.09.2023
- 38 Buchs A, Conde A, Frank A. et al The threat of dengue in Europe. New Microbes New Infect. 2022: 49-50 10.1061 doi: 10.1016/j.nmni.2022.101061
- 39 Bartholomeeusen K, Daniel M, LaBeaud DA. et al Chikungunya fever. Nat Rev Dis Primers 2023; 09: 17
- 40 ECDC. Factsheet about chikungunya. Im Internet https://www.ecdc.europa.eu/en/chikungunya/facts/factsheet
- 41 Heitmann A, Jansen S, Lühken R. et al Experimental risk assessment for chikungunya virus transmission based on vector competence, distribution and temperature suitability in Europe, 2018. Euro Surveill 2018; 23: 1800033
- 42 ECDC. Autochthonous transmission of chikungunya virus in mainland EU/EEA, 2007–present (30.01.2023). Im Internet. https://www.ecdc.europa.eu/en/infectious-disease-topics/z-disease-list/chikungunya-virus-disease/surveillance-threats-and Stand: 16.09.2023
- 43 Giron S, Franke F, Decoppet A. et al Vector-borne transmission of Zika virus in Europe, southern France, August 2019. Euro Durveill 2019; 24: 1900655
- 44 ECDC. Zika virus disease. Im Internet www.ecdc.europa.eu/sites/default/files/documents/zika-virus-disease-annual-epidemiological-report-2021.pdf
- 45 ECDC. Culex pipiens – Factsheet for experts (15.06.2020). Im Internet. https://www.ecdc.europa.eu/en/infectious-disease-topics/related-public-health-topics/disease-vectors/facts/mosquito-factsheets Stand: 14.08.2023
- 46 ECDC. Facts about Sindbis fever (31.05.2021). Im Internet. https://www.ecdc.europa.eu/en/sindbis-fever/facts Stand: 17.09.2023
- 47 Suvanto MT, Uusitalo R, Im Otte Kampe E. et al Sindbis virus outbreak and evidence for geographical expansion in Finland, 2021. Euro Surveill 2022; 27: 2200580
- 48 D’Amore C, Grimaldi P, Ascione T. et al West Nile Virus diffusion in temperate regions and climate change. A systematic review. Infez Med 2022; 31: 20-30
- 49 RKI. West-Nil-Fieber im Überblick. Im Internet. https://www.rki.de/DE/Content/InfAZ/W/WestNilFieber/West-Nil-Fieber_Ueberblick.html Stand: 16.09.2023
- 50 Camp JV, Nowotny N. The knowns and unknowns of West Nile virus in Europe: what did we learn from the 2018 outbreak?. Expert Rev Anti Infect Ther 2020; 18: 145-154
- 51 Paull SH, Horton DE, Ashfaq M. et al Drought and immunity determine the intensity of West Nile virus epidemics and climate change impacts. Proc Biol Sci 2017; 284: 20162078
- 52 ECDC. Factsheet about West Nile virus infection. Im Internet https://www.ecdc.europa.eu/en/west-nile-fever/facts
- 53 Ziegler U, Santos PD, Groschup MH. et al West Nile Virus Epidemic in Germany Triggered by Epizootic Emergence, 2019. Viruses 2020; 12: 448
- 54 Ziegler U, Lühken R, Keller M. et al West Nile virus epizootic in Germany, 2018. Antiviral Res 2019; 162: 39-43
- 55 ECDC. Epidemiological update: West Nile virus transmission season in Europe, 2022. Im Internet www.ecdc.europa.eu/en/news-events/epidemiological-update-west-nile-virus-transmission-season-europe-2022
- 56 Moser SK, Barnard M, Frantz RM. et al Scoping review of Culex mosquito life history trait heterogeneity in response to temperature. Parasit Vectors 2023; 16: 200
- 57 Di Pol G, Crotta M, Taylor RA. Modelling the temperature suitability for the risk of West Nile Virus establishment in European Culex pipiens populations. Transbound Emerg Dis 2022; 69: e1787-e1799
- 58 Adamczick C, Dierig A, Welzel T. et al Double trouble: visceral leishmaniasis in twins after traveling to Tuscany – a case report. BMC Infect Dis 2018; 18: 495
- 59 Semenza JC, Paz S. Climate change and infectious disease in Europe: Impact, projection and adaptation. Lancet Reg Health Eur 2021; 09: 100230
- 60 Bertola M, Mazzucato M, Pombi M. et al Updated occurrence and bionomics of potential malaria vectors in Europe: a systematic review (2000–2021). Parasit Vectors 2022; 15: 88
- 61 ECDC. Anopheles maculipennis s.l. – current known distribution: March 2022. Im Internet. https://www.ecdc.europa.eu/en/publications-data/anopheles-maculipennis-sl-current-known-distribution-march-2022 Stand: 14.08.2023
- 62 ECDC. Anopheles plumbeus – Factsheet for experts (21.08.2014). Im Internet. https://www.ecdc.europa.eu/en/disease-vectors/facts/mosquito-factsheets/anopheles-plumbeus Stand: 14.08.2023
- 63 Fischer L, Gültekin N, Kaelin MB. et al Rising temperature and its impact on receptivity to malaria transmission in Europe: A systematic review. Travel Med Infect Dis 2020; 36: 101815
- 64 Blackburn D, Drennon M, Broussard K. et al Outbreak of Locally Acquired Mosquito-Transmitted (Autochthonous) Malaria — Florida and Texas, May–July 2023. MMWR Morb Mortal Wkly Rep 2023; 72: 973-978
- 65 Koch LK, Kochmann J, Klimpel S. et al Modeling the climatic suitability of leishmaniasis vector species in Europe. Sci Rep 2017; 07: 13325
- 66 Torres-Guerrero E, Quintanilla-Cedillo MR, Ruiz-Esmenjaud J. et al Leishmaniasis: a review. F1000Res 2017; 06: 750
- 67 Burza S, Croft SL, Boelaert M. Leishmaniasis. Lancet 2018; 392: 951-970
- 68 WHO. Leishmaniasis (12 January 2023). Im Internet. https://www.who.int/news-room/fact-sheets/detail/leishmaniasis Stand: 08.08.2023
- 69 ECDC. Surveillance, prevention and control of leishmaniases in the EU and its neighbouring countries (20 Jun 2022). Im Internet https://www.ecdc.europa.eu/en/publications-data/surveillance-prevention-control-leishmaniases-European-Union-and-neighbouring-countries
- 70 Naucke TJ, Menn B, Massberg D. et al Sandflies and leishmaniasis in Germany. Parasitol Res 2008; 103 (Suppl. 01) S65-S68
- 71 Bogdan C, Schönian G, Bañuls AL. et al Visceral leishmaniasis in a German child who had never entered a known endemic area: case report and review of the literature. Clin Infect Dis 2001; 32: 302-306
- 72 Roque ALR, Jansen AM. Wild and synanthropic reservoirs of Leishmania species in the Americas. Int J Parasitol Parasites Wildl 2014; 03: 251-262
- 73 Thomson MC, Stanberry LR. Climate Change and Vectorborne Diseases. N Engl J Med 2022; 387: 1969-1978
- 74 Kaaijk P, Luytjes W. Are we prepared for emerging flaviviruses in Europe? Challenges for vaccination. Hum Vaccin Immunother 2018; 14: 337-344
- 75 Steinbrink A, Brugger K, Margos G. et al The evolving story of Borrelia burgdorferi sensu lato transmission in Europe. Parasitol Res 2022; 121: 781-803