Nervenheilkunde 2023; 42(07/08): 438-449
DOI: 10.1055/a-2049-9967
Schwerpunkt

Behandlung depressiver Störungen mittels nicht invasiver Neuromodulation

Treatment of depressive disorders using non-invasive neuromodulation
Maria Buthut
1   Klinik für Psychiatrie und Psychotherapie, Charité Campus Mitte (CCM), Charité – Universitätsmedizin Berlin
,
David Haslacher
1   Klinik für Psychiatrie und Psychotherapie, Charité Campus Mitte (CCM), Charité – Universitätsmedizin Berlin
,
Surjo R. Soekadar
1   Klinik für Psychiatrie und Psychotherapie, Charité Campus Mitte (CCM), Charité – Universitätsmedizin Berlin
› Author Affiliations

ZUSAMMENFASSUNG

Zur evidenzbasierten Behandlung depressiver Störungen gehören neben pharmako- und psychotherapeutischen Ansätzen auch nicht invasive Neuromodulationsverfahren. Während die Elektrokrampftherapie (EKT) in der Öffentlichkeit am bekanntesten ist, sind andere Techniken wie die transkranielle elektrische oder magnetische Stimulation (TES/TMS) weniger bekannt, auch in Fachkreisen, obwohl beispielsweise die TMS in verschiedene Behandlungsleitlinien aufgenommen wurde. Innovative Ansätze zur gezielten Modulation neuronaler Aktivität, wie die Closed-loop-Neuromodulation, bei der die Stimulationsparameter kontinuierlich an die aktuelle Hirnaktivität angepasst werden, sowie die transkranielle fokussierte Ultraschallstimulation (tFUS) und temporale Interferenzstimulation (TIS), die eine gezielte Stimulation tiefer Hirnregionen ermöglichen sollen, versprechen neue Perspektiven für die Behandlung depressiver Störungen.

ABSTRACT

Evidence-based treatment options of depressive disorders include – besides pharmacological and psychotherapeutic approaches – also non-invasive neuromodulation. While electroconvulsive therapy (ECT) is the most well-known among the public, other techniques such as transcranial electric or magnetic stimulation (TES/TMS) are far less known, even among experts, even though TMS has already been included in various treatment guidelines. Innovative approaches for targeted modulation of neural activity promise new perspectives for the treatment of depressive disorders, and include, e. g., closed-loop neuromodulation, where stimulation parameters are continuously adjusted to the current brain activity, or transcranial functional ultrasound stimulation (tFUS) and temporal interference stimulation (TIS), which may enable targeted stimulation of deep brain regions.



Publication History

Article published online:
07 July 2023

© 2023. Thieme. All rights reserved.

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • Literatur

  • 1 Rockwell A.. The medical and surgical uses of electricity. New York: Wood; 1896
  • 2 Althaus J.. A treatise on medical electricity, theoretical and practical: and its uses in the treatment of paralysis, neuralgia and other diseases.. Green: Longmans; 1873
  • 3 Latrgus D, Bernhold M.. De compositionibus medicamentorum. München: Bayerische Staatsbibliothek; 1786
  • 4 Leibowitz J. Electroshock therapy in Ibn-Sina’s Canon. J Hist Med Allied Sci 1957: 12
  • 5 Cambridge N. Electrical apparatus used in medicine before 1900. Proc R Soc Med 1977; 70 (09) 635-41
  • 6 Parent A. Duchenne De Boulogne: a pioneer in neurology and medical photography. Can J Neurol Sci 2005; 32 (03) 369-77
  • 7 Dussik K, Sakel M. Ergebnisse der Hypoglykämieshockbehandlung der Schizophrenie. Zeitschrift für die gesamte Neurologie und Psychiatrie 1936; 155 (01) 351-415
  • 8 Meduna L. Über experimentelle Campherepilepsie. Archiv für Psychiatrie und Nervenkrankheiten 1934; 102 (01) 333-339
  • 9 Bini L. 22. Experimental Reserches on Epileptic Attacks inducedby the electric current. American Journal of Psychiatry 1938; 94 6 S 172-174
  • 10 Kho K. et al A meta-analysis of electroconvulsive therapy efficacy in depression. J ECT 2003; 19 (03) 139-47
  • 11 Pagnin D. et al Efficacy of ECT in depression: a meta-analytic review. J ect 2004; 20 (01) 13-20
  • 12 Mutz J. et al Comparative efficacy and acceptability of non-surgical brain stimulation for the acute treatment of major depressive episodes in adults: systematic review and network meta-analysis. BMJ 2019; 364: l107
  • 13 Kalu U. et al Transcranial direct current stimulation in the treatment of major depression: a meta-analysis. Psychol Med 2012; 42 (09) 1791-800
  • 14 Cole E. et al Stanford Neuromodulation Therapy (SNT): A Double-Blind Randomized Controlled Trial. Am J Psychiatry 2022; 179 (02) 132-141
  • 15 Group U. Efficacy and safety of electroconvulsive therapy in depressive disorders: a systematic review and meta-analysis. Lancet 2003; 361 9360 799-808
  • 16 Gressier F. et al Postpartum electroconvulsive therapy: a systematic review and case report. Gen Hosp Psychiatry 2015; 37 (04) 310-4
  • 17 Andrade C, Arumugham S, Thirthalli J. Adverse Effects of Electroconvulsive Therapy. Psychiatr Clin North Am 2016; 39 (03) 513-30
  • 18 Argyelan M. et al ECT-induced cognitive side effects are associated with hippocampal enlargement. Transl Psychiatry 2021; 11 (01) 516
  • 19 Andrad C, Bolwig T. Electroconvulsive therapy, hypertensive surge, blood-brain barrier breach, and amnesia: exploring the evidence for a connection. J ECT 2014; 30 (02) 160-4
  • 20 Yrondi A. et al Electroconvulsive therapy, depression, the immune system and inflammation: A systematic review. Brain Stimul 2018; 11 (01) 29-51
  • 21 Fluitman S. et al Electroconvulsive therapy has acute immunological and neuroendocrine effects in patients with major depressive disorder. J Affect Disord 2011; 131 1–3 388-92
  • 22 Leaver A. et al Mechanisms of Antidepressant Response to Electroconvulsive Therapy Studied with Perfusion Magnetic Resonance Imaging. Biol Psychiatry 2019; 85 (06) 466-476
  • 23 Scott B. et al Neurogenesis in the dentate gyrus of the rat following electroconvulsive shock seizures. Exp Neurol 2000; 165 (02) 231-6
  • 24 Madsen T. et al Increased neurogenesis in a model of electroconvulsive therapy. Biol Psychiatry 2000; 47 (12) 1043-9
  • 25 Perera T. et al Antidepressant-induced neurogenesis in the hippocampus of adult nonhuman primates. J Neurosci 2007; 27 (18) 4894-901
  • 26 Wennstrom M. et al Electroconvulsive seizures induce proliferation of NG2-expressing glial cells in adult rat amygdala. Biol Psychiatry 2004; 55 (05) 464-71
  • 27 Semkovska M, McLoughlin D. Measuring retrograde autobiographical amnesia following electroconvulsive therapy: historical perspective and current issues. J ect 2013; 29 (02) 127-33
  • 28 Sigström R. et al Long-term subjective memory after electroconvulsive therapy. BJPsych Open 2020; 06 (02) e26
  • 29 White P. et al Anesthetic considerations for magnetic seizure therapy: a novel therapy for severe depression. Anesth Analg 2006; 103 (01) 76-80
  • 30 Lisanby S. et al Safety and feasibility of magnetic seizure therapy (MST) in major depression: randomized within-subject comparison with electroconvulsive therapy. Neuropsychopharmacology 2003; 28 (10) 1852-65
  • 31 Hoogendam J. et al Physiology of repetitive transcranial magnetic stimulation of the human brain. Brain Stimul 2010; 03 (02) 95-118
  • 32 George M. et al Daily repetitive transcranial magnetic stimulation (rTMS) improves mood in depression. Neuroreport 1995; 06 (14) 1853-6
  • 33 O’Reardon J. et al Efficacy and safety of transcranial magnetic stimulation in the acute treatment of major depression: a multisite randomized controlled trial. Biol Psychiatry 2007; 62 (11) 1208-16
  • 34 Huang Y. et al Theta burst stimulation of the human motor cortex. Neuron 2005; 45 (02) 201-6
  • 35 Bakker N. et al rTMS of the dorsomedial prefrontal cortex for major depression: safety, tolerability, effectiveness, and outcome predictors for 10 Hz versus intermittent theta-burst stimulation. Brain Stimul 2015; 08 (02) 208-15
  • 36 Sonmez A. et al Accelerated TMS for Depression: A systematic review and meta-analysis. Psychiatry Res 2019; 273: 770-781
  • 37 Zavaliangos-Petropulu A. et al Chronic Stroke Sensorimotor Impairment is related to smaller Hippocampal Volumes: An ENIGMA Analysis. J Am Heart Assoc 2022; 11 (10) e025109
  • 38 Rossi S. et al Safety, ethical considerations, and application guidelines for the use of transcranial magnetic stimulation in clinical practice and research. Clin Neurophysiol 2009; 120 (12) 2008-39
  • 39 Stultz D. et al Transcranial Magnetic Stimulation (TMS) Safety with Respect to Seizures: A Literature Review. Neuropsychiatr Dis Treat 2020; 16: 2989-3000
  • 40 Loo C. et al A review of the safety of repetitive transcranial magnetic stimulation as a clinical treatment for depression. Int J Neuropsychopharmacol 2008; 11 (01) 131-47
  • 41 Janicak P. et al Transcranial magnetic stimulation in the treatment of major depressive disorder: a comprehensive summary of safety experience from acute exposure, extended exposure, and during reintroduction treatment. J Clin Psychiatry 2008; 69 (02) 222-32
  • 42 Guse B. et al Cognitive effects of high-frequency repetitive transcranial magnetic stimulation: a systematic review. J Neural Transm 2010; 117 (01) 105-22
  • 43 Miuli A. et al Hypomanic/manic switch after transcranial magnetic stimulation in mood disorders: A systematic review and meta-analysis. World J Psychiatry 2021; 11 (08) 477-490
  • 44 Bandeira I. et al Neuroplasticity and non-invasive brain stimulation in the developing brain. Prog Brain Res 2021; 264: 57-89
  • 45 Paulus W. Transcranial electrical stimulation (tES–tDCS; tRNS, tACS) methods. Neuropsychol Rehabil 2011; 21 (05) 602-17
  • 46 Bahr-Hosseini M, Bikson M. Neurovascular-modulation: A review of primary vascular responses to transcranial electrical stimulation as a mechanism of action. Brain Stimulation 2021; 14 (04) 837-847
  • 47 Asamoah B. et al tACS motor system effects can be caused by transcutaneous stimulation of peripheral nerves. Nat Commun 2019; 10 (01) 266
  • 48 Vöröslakos M. et al Direct effects of transcranial electric stimulation on brain circuits in rats and humans. Nat Commun 2018; 09 (01) 483
  • 49 Nitsche M, Paulus W. Excitability changes induced in the human motor cortex by weak transcranial direct current stimulation. J Physiol 2000; 527: Pt 3: 633-9
  • 50 Stagg C. et al Physiology of Transcranial Direct Current Stimulation. J ECT 2018; 34 (03) 144-152
  • 51 Kim S. et al tDCS-induced alterations in GABA concentration within primary motor cortex predict motor learning and motor memory: a 7 T magnetic resonance spectroscopy study. Neuroimage 2014; 99: 237-43
  • 52 Razza L. et al A systematic review and meta-analysis on the effects of transcranial direct current stimulation in depressive episodes. Depress Anxiety 2020; 37 (07) 594-608
  • 53 Chaieb L. et al Transcranial random noise stimulation-induced plasticity is NMDA-receptor independent but sodium-channel blocker and benzodiazepines sensitive. Front Neurosci 2015; 09: 125
  • 54 Nikolin S. et al Transcranial Random Noise Stimulation for the Acute Treatment of Depression: A Randomized Controlled Trial. Int J Neuropsychopharmacol 2020; 23 (03) 146-156
  • 55 Haller N. et al Gamma transcranial alternating current stimulation improves mood and cognition in patients with major depression. J Psychiatr Res 2020; 130: 31-34
  • 56 Alexander M. et al Double-blind, randomized pilot clinical trial targeting alpha oscillations with transcranial alternating current stimulation (tACS) for the treatment of major depressive disorder (MDD). Transl Psychiatry 2019; 09 (01) 106
  • 57 Zheng W. et al Adjunctive transcranial alternating current stimulation for patients with major depressive disorder: A systematic review and meta-analysis. Front Psychiatry 2023; 14: 1154354
  • 58 Matsumoto H, Ugawa Y. Adverse events of tDCS and tACS: A review. Clin Neurophysiol Pract 2017; 02: 19-25
  • 59 Vonck K. et al Thalamic and limbic involvement in the mechanism of action of vagus nerve stimulation, a SPECT study. Seizure 2008; 17 (08) 699-706
  • 60 Pardo J. et al Chronic vagus nerve stimulation for treatment-resistant depression decreases resting ventromedial prefrontal glucose metabolism. Neuroimage 2008; 42 (02) 879-89
  • 61 Ben-Menachem E. et al Effects of vagus nerve stimulation on amino acids and other metabolites in the CSF of patients with partial seizures. Epilepsy Res 1995; 20 (03) 221-7
  • 62 Schlaepfer T. et al Vagus nerve stimulation for depression: efficacy and safety in a European study. Psychol Med 2008; 38 (05) 651-61
  • 63 Dibue-Adjei M. et al [Vagus Nerve Stimulation for Affective Disorders]. Fortschr Neurol Psychiatr 2020; 88 (01) 40-51
  • 64 Trevizol A. et al Transcutaneous Vagus Nerve Stimulation (taVNS) for Major Depressive Disorder: An Open Label Proof-of-Concept Trial. Brain Stimul 2016; 09 (03) 453-454
  • 65 Rong P. et al Effect of transcutaneous auricular vagus nerve stimulation on major depressive disorder: A nonrandomized controlled pilot study. J Affect Disord 2016; 195: 172-9
  • 66 Butt M. et al The anatomical basis for transcutaneous auricular vagus nerve stimulation. J Anat 2020; 236 (04) 588-611
  • 67 Yakunina N. et al Optimization of Transcutaneous Vagus Nerve Stimulation Using Functional MRI. Neuromodulation 2017; 20 (03) 290-300
  • 68 Bauer S. et al Transcutaneous Vagus Nerve Stimulation (tVNS) for Treatment of Drug-Resistant Epilepsy: A Randomized, Double-Blind Clinical Trial (cMPsE02). Brain Stimul 2016; 09 (03) 356-363
  • 69 Schulze-Bonhage A. Brain stimulation as a neuromodulatory epilepsy therapy. Seizure 2017; 44: 169-175
  • 70 Rabut C. et al Ultrasound Technologies for Imaging and Modulating Neural Activity. Neuron 2020; 108 (01) 93-110
  • 71 Blackmore J. et al Ultrasound Neuromodulation: A Review of Results, Mechanisms and Safety. Ultrasound Med Biol 2019; 45 (07) 1509-1536
  • 72 Tufail Y. et al Transcranial pulsed ultrasound stimulates intact brain circuits. Neuron 2010; 66 (05) 681-94
  • 73 Fomenko A. et al Systematic examination of low-intensity ultrasound parameters on human motor cortex excitability and behavior. Elife 2020: 9
  • 74 Legon W. et al Transcranial focused ultrasound modulates the activity of primary somatosensory cortex in humans. Nat Neurosci 2014; 17 (02) 322-9
  • 75 Legon W. et al Transcranial focused ultrasound neuromodulation of the human primary motor cortex. Sci Rep 2018; 08 (01) 10007
  • 76 Ranade S. et al Patapoutian, Mechanically Activated Ion Channels. Neuron 2015; 87 (06) 1162-1179
  • 77 Tyler W. Noninvasive neuromodulation with ultrasound? A continuum mechanics hypothesis. Neuroscientist 2011; 17 (01) 25-36
  • 78 Constans C. et al Potential impact of thermal effects during ultrasonic neurostimulation: retrospective numerical estimation of temperature elevation in seven rodent setups. Phys Med Biol 2018; 63 (02) 025003
  • 79 Kim Y. et al Neuromodulation Using Transcranial Focused Ultrasound on the Bilateral Medial Prefrontal Cortex. J Clin Med 2022; 11: 13
  • 80 Tsai S. Transcranial focused ultrasound as a possible treatment for major depression. Med Hypotheses 2015; 84 (04) 381-3
  • 81 Mehler D. et al Targeting the affective brain-a randomized controlled trial of real-time fMRI neurofeedback in patients with depression. Neuropsychopharmacology 2018; 43 (13) 2578-2585
  • 82 Liew S. et al Improving Motor Corticothalamic Communication After Stroke Using Real-Time fMRI Connectivity-Based Neurofeedback. Neurorehabilitation and Neural Repair 2016; 30 (07) 671-5
  • 83 Sterman M. Biofeedback in the treatment of epilepsy. Cleve Clin J Med 2010; 77 (Suppl. 03) S60-7
  • 84 Hardt J. et al Anxiety change through electroencephalographic alpha feedback seen only in high anxiety subjects. Science 1978; 201 4350 79-81
  • 85 Choi S. et al Is alpha wave neurofeedback effective with randomized clinical trials in depression? A pilot study. Neuropsychobiology 2011; 63 (01) 43-51
  • 86 Thibault R. et al The psychology of neurofeedback: Clinical intervention even if applied placebo. Am Psychol 2017; 72 (07) 679-688
  • 87 Ros T. et al Consensus on the reporting and experimental design of clinical and cognitive-behavioural neurofeedback studies (CRED-nf checklist). Brain 2020; 143 (06) 1674-1685
  • 88 Fernandez-Alvarez J. et al Efficacy of bio- and neurofeedback for depression: a meta-analysis. Psychol Med 2022; 52 (02) 201-216
  • 89 Chew T. et al Inter- and Intra-individual Variability in Response to Transcranial Direct Current Stimulation (tDCS) at Varying Current Intensities. Brain Stimul 2015; 08 (06) 1130-7
  • 90 López-Alonso V. et al Inter-individual variability in response to non-invasive brain stimulation paradigms. Brain Stimul 2014; 07 (03) 372-80
  • 91 Nasr K. et al Breaking the boundaries of interacting with the human brain using adaptive closed-loop stimulation. Prog Neurobiol 2022; 216: 102311
  • 92 Zrenner C. et al Real-time EEG-defined excitability states determine efficacy of TMS-induced plasticity in human motor cortex. Brain Stimul 2018; 11 (02) 374-389
  • 93 Faller J. et al Daily prefrontal closed-loop repetitive transcranial magnetic stimulation (rTMS) produces progressive EEG quasi-alpha phase entrainment in depressed adults. Brain Stimul 2022; 15 (02) 458-471
  • 94 Zrenner B. et al Brain oscillation-synchronized stimulation of the left dorsolateral prefrontal cortex in depression using real-time EEG-triggered TMS. Brain Stimul 2020; 13 (01) 197-205
  • 95 Grossman N. et al Noninvasive Deep Brain Stimulation via Temporally Interfering Electric Fields. Cell 2017; 169 (06) 1029-1041.e16
  • 96 Nasr K. et al Towards adaptive deep brain neuromodulation using temporal interference magnetic stimulation, in 10. Transcranial Magnetic Stimulation (TMS). Amsterdam: Elsevier; 2023
  • 97 Goldway N. et al Feasibility and utility of amygdala neurofeedback. Neurosci Biobehav Rev 2022; 138: 104694
  • 98 Rachid F. Maintenance repetitive transcranial magnetic stimulation (rTMS) for relapse prevention in with depression: A review. Psychiatry Res 2018; 262: 363-372
  • 99 Chen J. et al Comparative efficacy and acceptability of electroconvulsive therapy versus repetitive transcranial magnetic stimulation for major depression: A systematic review and multiple-treatments meta-analysis. Behav Brain Res 2017; 320: 30-36
  • 100 Morriss R. et al Clinical effectiveness of active Alpha-Stim AID versus sham Alpha-Stim AID in major depression in primary care in England (Alpha-Stim-D): a multicentre, parallel group, double-blind, randomised controlled trial. The Lancet Psychiatry 2023; 10 (03) 172-183
  • 101 Soekadar S. et al In vivo assessment of human brain oscillations during application of transcranial electric currents. Nat Commun 2013; 04: 2032
  • 102 Haslacher D. et al Stimulation Artifact Source Separation (SASS) for assessing electric brain oscillations during transcranial alternating current stimulation (tACS). Neuroimage. 2021: 117571