Subscribe to RSS
DOI: 10.1055/a-2046-0361
Diabetische Nephropathie
Geschlechtsspezifische Aspekte bei der Genese
ZUSAMMENFASSUNG
Der Einfluss des Geschlechts auf die Prävalenz, das Auftreten und den Verlauf vieler Erkrankungen ist tiefgreifend. In den meisten Fällen wird ein bestimmtes Geschlecht als Risikofaktor für die Genese und Progression der Krankheit angesehen. Dies ist bei der diabetischen Nephropathie (DN) nicht ganz so eindeutig, deren Entwicklung und Schweregrad von vielen Faktoren wie dem Typ und der Dauer des Diabetes mellitus, der Blutzucker- und Blutdruckeinstellung sowie biologisch-genetischen Risikofaktoren abhängen. Insbesondere die Tatsache, dass die Sexualhormonspiegel, die an der Pathophysiologie der Nieren beteiligt zu sein scheinen, durch den Diabetes mellitus selbst dramatisch beeinflusst werden, verdeutlicht die Komplexität der Frage nach den Geschlechtsunterschieden bei DN. Das Hauptziel dieser Übersichtsarbeit ist es, den aktuellen Wissensstand über biologische geschlechtsspezifische Aspekte bei der Genese der DN zusammenzufassen und die Rolle der Sexualhormone zu beleuchten.
Publication History
Article published online:
20 July 2023
© 2023. Thieme. All rights reserved.
Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany
-
Literatur
- 1 Alicic RZ, Rooney MT, Tuttle KR. Diabetic Kidney Disease: Challenges, Progress, and Possibilities. Clin J Am Soc Nephrol 2017; 12: 2032-2045
- 2 Ioannou K. Diabetic nephropathy: is it always there? Assumptions, weaknesses and pitfalls in the diagnosis. Hormones (Athens) 2017; 16: 351-361
- 3 Sagoo MK, Gnudi L. Diabetic Nephropathy: An Overview. Methods Mol Biol 2020; 2067: 3-7
- 4 Qi C, Mao X, Zhang Z. et al Classification and Differential Diagnosis of Diabetic Nephropathy. J Diabetes Res 2017; 2017: 8637138
- 5 Najafian B, Alpers CE, Fogo AB. Pathology of human diabetic nephropathy. Contrib Nephrol 2011; 170: 36-47
- 6 Wolf G, Ritz E. Diabetic nephropathy in type 2 diabetes prevention and patient management. J Am Soc Nephrol 2003; 14: 1396-1405
- 7 Li R, Chung AC, Dong Y. et al The microRNA miR-433 promotes renal fibrosis by amplifying the TGF-β/Smad3-Azin1 pathway. Kidney Int 2013; 84: 1129-1144
- 8 Iwano M, Neilson EG. Mechanisms of tubulointerstitial fibrosis. Curr Opin Nephrol Hypertens 2004; 13: 279-284
- 9 McGill JB, Bell DS. Anemia and the role of erythropoietin in diabetes. J Diabetes Complications 2006; 20: 262-272
- 10 Al-Khoury S, Afzali B, Shah N. et al Diabetes, kidney disease and anaemia: time to tackle a troublesome triad?. Int J Clin Pract 2007; 61: 281-289
- 11 Wolf G, Müller N, Hunger-Battefeld W. et al Hemoglobin concentrations are closely linked to renal function in patients with type 1 or 2 diabetes mellitus. Kidney Blood Press Res 2008; 31: 313-321
- 12 Babitt JL, Lin HY. Mechanisms of anemia in CKD. J Am Soc Nephrol 2012; 23: 1631-1634
- 13 Krantz SB. Erythropoietin. Blood 1991; 77: 419-434
- 14 Noguchi CT.. Where the Epo cells are Blood. 2008; 111: 4836-4837
- 15 Tanaka T, Nangaku M. Recent advances and clinical application of erythropoietin and erythropoiesis-stimulating agents. Exp Cell Res 2012; 318: 1068-1073
- 16 Vinod PB. Pathophysiology of diabetic nephropathy. Clinical Queries: Nephrology 2012; 01: 121-126
- 17 Wolf G. New insights into the pathophysiology of diabetic nephropathy: from haemodynamics to molecular pathology. Eur J Clin Invest 2004; 34: 785-796
- 18 Hussain S, Chand Jamali M, Habib A. et al Diabetic kidney disease: An overview of prevalence, risk factors, and biomarkers. Clinical Epidemiology and Global Health 2021; 09: 2-6
- 19 Wolf G, Ziyadeh FN. Molecular mechanisms of diabetic renal hypertrophy. Kidney Int 1999; 56: 393-405
- 20 Kolset SO, Reinholt FP, Jenssen T. Diabetic nephropathy and extracellular matrix. J Histochem Cytochem 2012; 60: 976-986
- 21 Neugarten J, Acharya A, Silbiger SR. Effect of gender on the progression of nondiabetic renal disease: a meta-analysis. J Am Soc Nephrol 2000; 11: 319-329
- 22 Giandalia A, Giuffrida AE, Gembillo G. et al T. Gender Differences in Diabetic Kidney Disease: Focus on Hormonal, Genetic and Clinical Factors. Int J Mol Sci 2021; 22: 5808
- 23 Piani F, Melena I, Tommerdahl KL. et al Sex-related differences in diabetic kidney disease: A review on the mechanisms and potential therapeutic implications. J Diabetes Complications 2021; 35: 107841
- 24 Parving HH, Gall MA, Skøtt P. et al Prevalence and causes of albuminuria in non-insulin-dependent diabetic patients. Kidney Int 1992; 41: 758-762
- 25 Keane WF, Brenner BM, de Zeeuw D. et al RENAAL Study Investigators. The risk of developing end-stage renal disease in patients with type 2 diabetes and nephropathy: the RENAAL study. Kidney Int 2003; 63: 1499-1507
- 26 Nakano S, Ogihara M, Tamura C. et al Reversed circadian blood pressure rhythm independently predicts endstage renal failure in non-insulin-dependent diabetes mellitus subjects. J Diabetes Complications 1999; 13: 224-231
- 27 Breyer JA, Bain RP, Evans JK. et al Predictors of the progression of renal insufficiency in patients with insulin-dependent diabetes and overt diabetic nephropathy. The Collaborative Study Group. Kidney Int 1996; 50: 1651-1658
- 28 Rossing P, Hougaard P, Parving HH. Risk factors for development of incipient and overt diabetic nephropathy in type 1 diabetic patients: a 10-year prospective observational study. Diabetes Care 2002; 25: 859-864
- 29 Torffvit O, Agardh CD. The impact of metabolic and blood pressure control on incidence and progression of nephropathy. A 10-year study of 385 type 2 diabetic patients. J Diabetes Complications 2001; 15: 307-513
- 30 Maahs DM, West NA, Lawrence JM. et al Epidemiology of type 1 diabetes. Endocrinol Metab Clin North Am 2010; 39: 481-497
- 31 Beeson PB. Age and sex associations of 40 autoimmune diseases. Am J Med 1994; 96: 457-462
- 32 Mayer-Davis EJ, Lawrence JM, Dabelea D. et al SEARCH for Diabetes in Youth Study. Incidence Trends of Type 1 and Type 2 Diabetes among Youths, 2002–2012. N Engl J Med 2017; 376: 1419-1429
- 33 Hamman RF, Bell RA, Dabelea D. et al SEARCH for Diabetes in Youth Study Group. The SEARCH for Diabetes in Youth study: rationale, findings, and future directions. Diabetes Care 2014; 37: 3336-3344
- 34 Shepard BD. Sex differences in diabetes and kidney disease: mechanisms and consequences. Am J Physiol Renal Physiol 2019; 317: F456-F462
- 35 Kautzky-Willer A, Harreiter J, Pacini G. Sex and Gender Differences in Risk, Pathophysiology and Complications of Type 2 Diabetes Mellitus. Endocr Rev 2016; 37: 278-316
- 36 Wannamethee SG, Papacosta O, Lawlor DA. et al Do women exhibit greater differences in established and novel risk factors between diabetes and non-diabetes than men? The British Regional Heart Study and British Women’s Heart Health Study. Diabetologia 2012; 55: 80-87
- 37 Paul SK, Owusu Adjah ES, Samanta M. et al Comparison of body mass index at diagnosis of diabetes in a multi-ethnic population: A case-control study with matched non-diabetic controls. Diabetes Obes Metab 2017; 19: 1014-1023
- 38 Huebschmann AG, Huxley RR, Kohrt WM. et al Sex differences in the burden of type 2 diabetes and cardiovascular risk across the life course. Diabetologia 2019; 62: 1761-1772
- 39 Leon BM, Maddox TM. Diabetes and cardiovascular disease: Epidemiology, biological mechanisms, treatment recommendations and future research. World J Diabetes 2015; 06: 1246-1258
- 40 Raile K, Galler A, Hofer S. et al Diabetic nephropathy in 27,805 children, adolescents, and adults with type 1 diabetes: effect of diabetes duration, A1C, hypertension, dyslipidemia, diabetes onset, and sex. Diabetes Care 2007; 30: 2523-2528
- 41 Retnakaran R, Cull CA, Thorne KI, Adler AI, Holman RR. UKPDS Study Group. Risk factors for renal dysfunction in type 2 diabetes: U. K. Prospective Diabetes Study 74. Diabetes 2006; 55: 1832-1839
- 42 Orchard TJ, Dorman JS, Maser RE. et al Prevalence of complications in IDDM by sex and duration. Pittsburgh Epidemiology of Diabetes Complications Study II. Diabetes 1990; 39: 1116-1124
- 43 Maric C, Sullivan S. Estrogens and the diabetic kidney. Gend Med 2008; 05: S103-S113
- 44 Dahlquist G, Källén B. Mortality in childhood-onset type 1 diabetes: a population-based study. Diabetes Care 2005; 28: 2384-2387
- 45 Harvey JN. The influence of sex and puberty on the progression of diabetic nephropathy and retinopathy. Diabetologia 2011; 54: 1943-1945
- 46 Amin R, Schultz C, Ong K. et al Oxford Regional Prospective Study. Low IGF-I and elevated testosterone during puberty in subjects with type 1 diabetes developing microalbuminuria in comparison to normoalbuminuric control subjects: the Oxford Regional Prospective Study. Diabetes Care 2003; 26: 1456-1461
- 47 Maric C, Forsblom C, Thorn L. et al FinnDiane Study Group. Association between testosterone, estradiol and sex hormone binding globulin levels in men with type 1 diabetes with nephropathy. Steroids 2010; 75: 772-778
- 48 Harjutsalo V, Maric-Bilkan C, Forsblom C. et al FinnDiane Study Group. Age at menarche and the risk of diabetic microvascular complications in patients with type 1 diabetes. Diabetologia 2016; 59: 472-480
- 49 Zhang L, Krzentowski G, Albert A. et al Factors predictive of nephropathy in DCCT Type 1 diabetic patients with good or poor metabolic control. Diabet Med 2003; 20: 580-585
- 50 Silbiger S, Neugarten J. Gender and human chronic renal disease. Gend Med 2008; 05: S3-S10
- 51 Kautzky-Willer A, Handisurya A.. Metabolic diseases and associated complications: sex and gender matter!. Eur J Clin Invest 2009; 39: 631-648
- 52 Sibley SD, Thomas W, de Boer I. et al Gender and elevated albumin excretion in the Diabetes Control and Complications Trial/Epidemiology of Diabetes Interventions and Complications (DCCT/EDIC) cohort: role of central obesity. Am J Kidney Dis 2006; 47: 223-232
- 53 Looker HC, Krakoff J, Funahashi T. et al Adiponectin concentrations are influenced by renal function and diabetes duration in Pima Indians with type 2 diabetes. J Clin Endocrinol Metab 2004; 89: 4010-7
- 54 Crook ED, Patel SR. Diabetic nephropathy in African-American patients. Curr Diab Rep 2004; 04: 455-461
- 55 Peters V, Zschocke J, Schmitt CP. Carnosinase, diabetes mellitus and the potential relevance of carnosinase deficiency. J Inherit Metab Dis 2018; 41: 39-47
- 56 Maric-Bilkan C. Sex differences in micro- and macro-vascular complications of diabetes mellitus. Clin Sci (Lond) 2017; 131: 833-846
- 57 Clotet S, Riera M, Pascual J. et al RAS and sex differences in diabetic nephropathy. Am J Physiol Renal Physiol 2016; 310: F945-F957
- 58 Payne AH, Hales DB. Overview of steroidogenic enzymes in the pathway from cholesterol to active steroid hormones. Endocr Rev 2004; 25: 947-970
- 59 Gambineri A, Pelusi C. Sex hormones, obesity and type 2 diabetes: is there a link?. Endocr Connect 2019; 08: R1-R9
- 60 Livingstone C, Collison M. Sex steroids and insulin resistance. Clin Sci (Lond) 2002; 102: 151-166
- 61 Yan H, Yang W, Zhou F. et al Estrogen Improves Insulin Sensitivity and Suppresses Gluconeogenesis via the Transcription Factor Foxo1. Diabetes 2019; 68: 291-304
- 62 Chang E, Varghese M, Singer K. Gender and Sex Differences in Adipose Tissue. Curr Diab Rep 2018; 18: 69
- 63 Gyawali P, Martin SA, Heilbronn LK. et al The role of sex hormone-binding globulin (SHBG), testosterone, and other sex steroids, on the development of type 2 diabetes in a cohort of community-dwelling middle-aged to elderly men. Acta Diabetol 2018; 55: 861-872
- 64 Maric C. Sex, diabetes and the kidney. Am J Physiol Renal Physiol 2009; 296: F680-F688
- 65 Cheung KK, Luk AO, So WY. et al Testosterone level in men with type 2 diabetes mellitus and related metabolic effects: A review of current evidence. J Diabetes Investig 2015; 06: 112-123
- 66 Liu J, Liu Z, Sun W. et al Role of sex hormones in diabetic nephropathy. Front Endocrinol 2023: 14