Osteologie 2022; 31(04): 262-269
DOI: 10.1055/a-1951-1233
Review

Der Einfluss von Schilddrüsenhormonen auf den Knochen – von der zellulären Ebene, über Mausmodelle bis hin zum Patienten

The Effects of Thyroid Hormones on Bone – from Cells to Mouse Models to Patients
1   Medizinische Klinik III und Zentrum für gesundes Altern, Medizinische Fakultät, Technische Universität Dresden, Dresden, Deutschland
,
Martina Rauner
1   Medizinische Klinik III und Zentrum für gesundes Altern, Medizinische Fakultät, Technische Universität Dresden, Dresden, Deutschland
,
Elena Tsourdi
1   Medizinische Klinik III und Zentrum für gesundes Altern, Medizinische Fakultät, Technische Universität Dresden, Dresden, Deutschland
› Institutsangaben

Zusammenfassung

Die Schilddrüsenhormone L-Thyroxin und 3,3',5-Triiod-L-thyronin spielen eine zentrale Rolle im Skelettwachstum und beim Erhalt eines gesunden Knochens im Erwachsenenalter. Auf zellulärer Ebene sind die Wirkungen von Schilddrüsenhormonen in Osteoblasten gut erforscht, während ihre Effekte auf Osteoklasten und Osteozyten nur unzureichend verstanden sind. Die Behandlung von Osteoblasten mit Schilddrüsenhormonen in vitro führt zu deren Leistungssteigerung, wobei drei wesentliche Faktoren ihre zelluläre Wirksamkeit bestimmen können: der Import in die Zelle, ihre Aktivierung oder Inaktivierung durch Dejodasen und die Verfügbarkeit der Schilddrüsenhormonrezeptoren. Präklinische Studien unter Verwendung transgener Mausmodelle zeigen, dass jeder dieser Faktoren eine wesentliche Rolle im Skelettwachstum und dem Erhalt der Knochenqualität, -struktur und -mineraldichte spielen. Schilddrüsenerkrankungen führen zu unterschiedlichen skelettalen Veränderungen im Kindes- und Erwachsenenalter und können in der Regel durch eine Therapie gut behandelt werden. Sowohl eine Hypo- als auch Hyperthyreose kann, wenn unbehandelt, im Kindesalter zu Kleinwuchs führen. In erwachsenen Betroffenen verursacht eine manifeste Hyperthyreose eine sekundäre Osteoporose mit erhöhten Frakturrisiko infolge eines gesteigerten Knochenaufbaus und -abbaus. Eine Hypothyreose hingegen verlangsamt den Knochenumbauzyklus und steigert die sekundäre Mineralisierung. Da Schilddrüsenhormone den Knochenumbau direkt regulieren können, nehmen sie ebenfalls Einfluss auf die Kalzium- und Phosphathomöostase im Körper. Zusammengefasst sind Schilddrüsenhormone wichtige Regulatoren des Knochen- und Mineralstoffwechsels.

Abstract

The thyroid hormones L-thyroxine und 3,3',5-triiodo-L-thyronine are critical regulators of skeletal development and maintenance of a healthy bone in adults. While direct actions of thyroid hormones on osteoblasts are well established, only little is known about thyroid hormone signaling in osteoclasts and especially osteocytes. Thyroid hormones increase osteoblast differentiation and function in vitro. Three main factors determine their biological activity: their import via specific transporter proteins, their activation or inactivation mediated by deiodinases and the thyroid hormone receptor availability. Preclinical studies using transgenic mouse models demonstrated that every one of these factors determines bone quality, structure and mineral density. Thyroid disorders can cause distinct skeletal changes during childhood and adulthood that usually can be medically treated. During childhood, untreated hypothyroidism and hyperthyroidism both can cause short stature. In adults, hyperthyroidism is a known cause of secondary osteoporosis with an increased fracture risk due to enhanced bone formation and especially bone resorption. In contrast, hypothyroid patients display a prolonged bone remodeling cycle and increased secondary mineralization. Given that thyroid hormones directly affect bone turnover, they can also regulate the whole-body calcium and phosphate homeostasis. Thus, thyroid hormones play an important role in bone and mineral metabolism.



Publikationsverlauf

Eingereicht: 26. Juli 2022

Angenommen nach Revision: 23. September 2022

Artikel online veröffentlicht:
14. Dezember 2022

© 2022. Thieme. All rights reserved.

Georg Thieme Verlag
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • Literatur

  • 1 Mullur R, Liu Y-Y, Brent GA.. Thyroid hormone regulation of metabolism. Physiol Rev 2014; 94: 355-382
  • 2 Cheng SY, Leonard JL, Davis PJ.. Molecular aspects of thyroid hormone actions. Endocr Rev. 2010
  • 3 Davis PJ, Leonard JL, Davis FB.. Mechanisms of nongenomic actions of thyroid hormone. Front Neuroendocrinol. 2008
  • 4 Brtko J.. Thyroid hormone and thyroid hormone nuclear receptors: History and present state of art. Endocr Regul 2021; 55: 103-119
  • 5 Flamant F, Cheng SY, Hollenberg AN. et al. Thyroid Hormone Signaling Pathways: Time for a More Precise Nomenclature. Endocrinology 2017; 158: 2052-2057
  • 6 Bassett JHD, Williams GR.. Role of Thyroid Hormones in Skeletal Development and Bone Maintenance. Endocr Rev 2016; 37: 135-187
  • 7 Bassett JHD, Williams GR.. Critical role of the hypothalamic-pituitary-thyroid axis in bone. Bone 2008; 43: 418-426
  • 8 Crockett JC, Rogers MJ, Coxon FP. et al. Bone remodelling at a glance. J Cell Sci 2011; 124: 991-998
  • 9 Fratzl-Zelman N, Hörandner H, Luegmayr E. et al. Effects of triiodothyronine on the morphology of cells and matrix, the localization of alkaline phosphatase, and the frequency of apoptosis in long-term cultures of MC3T3-E1 cells. Bone 1997; 20: 225-236
  • 10 Klaushofer K, Varga F, Glantschnig H. et al. The Regulatory Role of Thyroid Hormones in Bone Cell Growth and Differentiation. J Nutr 2018; 125: 1996S-2003S
  • 11 Varga F, Rumpler M, Zoehrer R. et al. T3 affects expression of collagen I and collagen cross-linking in bone cell cultures. Biochem Biophys Res Commun 2010; 402: 180-185
  • 12 Banovac K, Koren E.. Triiodothyronine stimulates the release of membrane-bound alkaline phosphatase in osteoblastic cells. Calcif Tissue Int 2000; 67: 460-465
  • 13 Tokuda K, Otsuka T, Adachi S. et al. (-)-Epigallocatechin gallate inhibits thyroid hormone‑stimulated osteocalcin synthesis in osteoblasts. Mol Med Rep 2011; 4: 297-300
  • 14 Cray JJ, Khaksarfard K, Weinberg SM. et al. Effects of Thyroxine Exposure on Osteogenesis in Mouse Calvarial Pre-Osteoblasts. PLoS One 2013; 8: e69067
  • 15 Huang BK, Golden LA, Tarjan G. et al. Insulin-Like Growth Factor I Production Is Essential for Anabolic Effects of Thyroid Hormone in Osteoblasts. J Bone Miner Res 2010; 15: 188-197
  • 16 Allain TJ, Chambers TJ, Flanagan AM. et al. Tri-iodothyronine stimulates rat osteoclastic bone resorption by an indirect effect. J Endocrinol 1992; 133: 327-331
  • 17 Siddiqi A, Burrin JM, Wood DF. et al. Tri-iodothyronine regulates the production of interleukin-6 and interleukin-8 in human bone marrow stromal and osteoblast-like cells. J Endocrinol 1998; 157: 453-461
  • 18 Miura M, Tanaka K, Komatsu Y. et al. A Novel Interaction between Thyroid Hormones and 1,25(OH)2D3 in Osteoclast Formation. Biochem Biophys Res Commun 2002; 291: 987-994
  • 19 Varga F, Spitzer S, Klaushofer K.. Triiodothyronine (T3) and 1,25-dihydroxyvitamin D3 (1,25D 3 ) Inversely Regulate OPG Gene Expression in Dependence of the Osteoblastic Phenotype. Calcif Tissue Int 2004; 74: 382-387
  • 20 Heuer H, Visser TJ.. The pathophysiological consequences of thyroid hormone transporter deficiencies: Insights from mouse models. Biochim Biophys Acta – Gen Subj 2013; 1830: 3974-3978
  • 21 Bernal J, Guadaño-Ferraz A, Morte B.. Thyroid hormone transporters-functions and clinical implications. Nat Rev Endocrinol 2015; 11: 406-417
  • 22 Capelo LP, Beber EH, Fonseca TL. et al. The monocarboxylate transporter 8 and L-type amino acid transporters 1 and 2 are expressed in mouse skeletons and in osteoblastic MC3T3-E1 cells. Thyroid 2009; 19: 171-180
  • 23 Williams AJ, Robson H, Kester MHA. et al. Iodothyronine deiodinase enzyme activities in bone. Bone 2008; 43: 126-134
  • 24 Siddiqi A, Parsons MP, Lewis JL. et al. TR expression and function in human bone marrow stromal and osteoblast-like cells. J Clin Endocrinol Metab 2002; 87: 906-914
  • 25 Kalyanaraman H, Schwappacher R, Joshua J. et al. Nongenomic thyroid hormone signaling occurs through a plasma membrane – Localized receptor. Sci Signal 2014; 7: ra48
  • 26 Lindsey RC, Godwin C, Mohan S.. Skeletal effects of nongenomic thyroid hormone receptor beta signaling. J Endocrinol 2019; 242: 173-183
  • 27 Beber EH, Capelo LP, Fonseca TL. et al. The Thyroid Hormone Receptor (TR) β-Selective Agonist GC-1 Inhibits Proliferation But Induces Differentiation and TR β mRNA Expression in Mouse and Rat Osteoblast-Like Cells. Calcif Tissue Int 2009; 84: 324-333
  • 28 Monfoulet L-E, Rabier B, Dacquin R. et al. Thyroid hormone receptor β mediates thyroid hormone effects on bone remodeling and bone mass. J Bone Miner Res 2011; 26: 2036-2044
  • 29 Flamant F, Poguet A-L, Plateroti M. et al. Congenital Hypothyroid Pax8−/− Mutant Mice Can Be Rescued by Inactivating the TRα Gene. Mol Endocrinol 2002; 16: 24-32
  • 30 Bassett JHD, Williams AJ, Murphy E. et al. A Lack of Thyroid Hormones Rather than Excess Thyrotropin Causes Abnormal Skeletal Development in Hypothyroidism. Mol Endocrinol 2008; 22: 501-512
  • 31 Wistuba J, Mittag J, Luetjens CM. et al. Male congenital hypothyroid Pax8−/− mice are infertile despite adequate treatment with thyroid hormone. J Endocrinol 2007; 192: 99-109
  • 32 Tsourdi E, Rijntjes E, Köhrle J. et al. Hyperthyroidism and Hypothyroidism in Male Mice and Their Effects on Bone Mass, Bone Turnover, and the Wnt Inhibitors Sclerostin and Dickkopf-1. Endocrinology 2015; 156: 3517-3527
  • 33 Tsourdi E, Lademann F, Ominsky MS. et al. Sclerostin blockade and zoledronic acid improve bone mass and strength in male mice with exogenous hyperthyroidism. Endocrinology 2017; 158: 3765-3777
  • 34 Lademann F, Tsourdi E, Hofbauer LC. et al. Thyroid Hormone Actions and Bone Remodeling – The Role of the Wnt Signaling Pathway. Exp Clin Endocrinol Diabetes 2020;
  • 35 Lademann F, Weidner H, Tsourdi E. et al. Disruption of BMP signaling prevents hyperthyroidism-induced bone loss in male mice. J Bone Miner Res 2020;
  • 36 Leitch VD, Di Cosmo C, Liao XH. et al. An essential physiological role for MCT8 in bone in male mice. Endocrinology 2017; 158: 3055-3066
  • 37 Lademann F, Tsourdi E, Rijntjes E. et al. Lack of the Thyroid Hormone Transporter Mct8 in Osteoblast and Osteoclast Progenitors Increases Trabecular Bone in Male Mice. Thyroid 2020; 30: 329-342
  • 38 Lademann F, Tsourdi E, Hofbauer LC. et al. Bone cell-specific deletion of thyroid hormone transporter Mct8 distinctly regulates bone volume in young versus adult male mice. Bone 2022; 159: 116375
  • 39 Lademann F, Mayerl S, Tsourdi E. et al. The thyroid hormone transporter MCT10 is a novel regulator of trabecular bone mass and bone turnover in male mice. Endocrinology 2021;
  • 40 Bassett JHD, Boyde A, Howell PGT. et al. Optimal bone strength and mineralization requires the type 2 iodothyronine deiodinase in osteoblasts. Proc Natl Acad Sci U S A 2010; 107: 7604-7609
  • 41 Hernandez A, Martinez ME, Liao XH. et al. Type 3 Deiodinase Deficiency Results in Functional Abnormalities at Multiple Levels of the Thyroid Axis. Endocrinology 2007; 148: 5680-5687
  • 42 Bassett JHD, O’Shea PJ, Sriskantharajah S. et al. Thyroid hormone excess rather than thyrotropin deficiency induces osteoporosis in hyperthyroidism. Mol Endocrinol 2007; 21: 1095-1107
  • 43 Segni M, Leonardi E, Mazzoncini B. et al. Special features of Graves’ disease in early childhood. Thyroid 1999; 9: 871-877
  • 44 Salerno M, Micillo M, Di Maio S. et al. Longitudinal growth, sexual maturation and final height in patients with congenital hypothyroidism detected by neonatal screening. Eur J Endocrinol 2001; 145: 377-383
  • 45 Baumgartner-Parzer S.. Primary congenital hypothyroidism. Austrian J Clin Endocrinol Metab 2019; 12: 70-72
  • 46 Tsourdi E, Lademann F, Siggelkow H.. Auswirkungen von Schilddrüsenfunktionsstörungen auf den Knochen. Internist (Berl) 2018; 59: 661-667
  • 47 Blum MR, Bauer DC, Collet TH. et al. Subclinical thyroid dysfunction and fracture risk a meta-analysis. JAMA – J Am Med Assoc 2015; 313: 2055-2065
  • 48 Abrahamsen B, Jørgensen HL, Laulund AS. et al. Low Serum Thyrotropin Level and Duration of Suppression as a Predictor of Major Osteoporotic Fractures-The OPENTHYRO Register Cohort 2014;
  • 49 Vestergaard P, Mosekilde L.. Hyperthyroidism, Bone Mineral, and Fracture Risk – A Meta-Analysis. Thyroid 2003; 13: 585-593
  • 50 Vestergaard P, Rejnmark L, Mosekilde L.. Influence of Hyper- and Hypothyroidism, and the Effects of Treatment with Antithyroid Drugs and Levothyroxine on Fracture Risk. Calcif Tissue Int 2005; 77: 139-144
  • 51 Vestergaard P, Mosekilde L.. Fractures in Patients with Hyperthyroidism and Hypothyroidism: A Nationwide Follow-Up Study in 16,249 Patients https://home.liebertpub.com/thy 2004; 12: 411-419
  • 52 Ahmad T, Muhammad ZA, Nadeem S.. Is Hypothyroidism Associated With Outcomes in Fracture Patients? Data From a Trauma Registry. J Surg Res 2021; 268: 527-531
  • 53 Maccagnano G, Notarnicola A, Pesce V. et al. The Prevalence of Fragility Fractures in a Population of a Region of Southern Italy Affected by Thyroid Disorders. 2016;
  • 54 Apostu D, Lucaciu O, Oltean-Dan D. et al. The influence of thyroid pathology on osteoporosis and fracture risk: A review. Diagnostics. 2020 10.
  • 55 Gonzalez Rodriguez E, Stuber M, Giovane C Del. et al. Skeletal Effects of Levothyroxine for Subclinical Hypothyroidism in Older Adults: A TRUST Randomized Trial Nested Study. J Clin Endocrinol Metab 2020; 105: 336-343
  • 56 Segna D, Bauer DC, Feller M. et al. Association between subclinical thyroid dysfunction and change in bone mineral density in prospective cohorts.
  • 57 Refetoff S, DeWind LT, DeGroot LJ.. Familial Syndrome Combining Deaf-Mutism, Stippled Epiphyses, Goiter and Abnormally High PBI: Possible Target Organ Refractoriness to Thyroid Hormone. J Clin Endocrinol Metab 1967; 27: 279-294
  • 58 Dumitrescu AM, Refetoff S.. The syndromes of reduced sensitivity to thyroid hormone. Biochim Biophys Acta 2013; 1830: 3987-4003
  • 59 Weiss RE.. “They Have Ears But Do Not Hear” (Psalms 135:17): Non-Thyroid Hormone Receptor β (non-TRβ) Resistance to Thyroid Hormone https://home.liebertpub.com/thy 2008; 18: 3-5
  • 60 Refetoff S, Bassett JHD, Beck-Peccoz P. et al. Classification and proposed nomenclature for inherited defects of thyroid hormone action, cell transport, and metabolism. J Clin Endocrinol Metab 2014; 99: 768-770
  • 61 Schoenmakers N, Moran C, Peeters RP. et al. Resistance to thyroid hormone mediated by defective thyroid hormone receptor alpha. Biochim Biophys Acta 2013; 1830: 4004-4008
  • 62 van Mullem AA, Visser TJ, Peeters RP.. Clinical Consequences of Mutations in Thyroid Hormone Receptor-α1. Eur Thyroid J 2014; 3: 17-24
  • 63 Leitch VD, Bassett JHD, Williams GR.. Role of thyroid hormones in craniofacial development. Nat Rev Endocrinol 2020; 16: 147-164
  • 64 Summers R, Macnab R.. Thyroid, parathyroid hormones and calcium homeostasis. 2017;
  • 65 Cross HS, Lehner E, Fratzl-Zelman N. et al. Interaction between Calcitriol and Thyroid Hormone: Effects on Intestinal Calcium Transport and Bone Resorption. Calcium Transp Intracell Calcium Homeost 1990; 401-408
  • 66 Dhanwal D.. Thyroid disorders and bone mineral metabolism. Indian J Endocrinol Metab 2011; 15: 107
  • 67 Malick A, Kondapalli A, Kurra S.. Non-parathyroid Hormone–Mediated Endocrine Causes of Hypercalcemia. Contemp Endocrinol 2022; 223-236
  • 68 Mosekilde L, Sanvig Christensen M.. Decreased parathyroid function in hyperthyroidism: interrelationships between serum parathyroid hormone, calcium-phosphorus metabolism and thyroid function. Acta Endocrinol (Copenh) 1977; 84: 566-575
  • 69 Ishiguro M, Yamamoto H, Masuda M. et al. Thyroid hormones regulate phosphate homoeostasis through transcriptional control of the renal type IIa sodium-dependent phosphate co-transporter (Npt2a) gene. Biochem J 2010; 427: 161-169
  • 70 Bouillon R, De Moor P.. Parathyroid function in patients with hyper- or hypothyroidism. J Clin Endocrinol Metab 1974; 38: 999-1004
  • 71 Yamashita H, Yamazaki Y, Hasegawa H. et al. Fibroblast growth factor-23 in patients with graves’ disease before and after antithyroid therapy: Its important role in serum phosphate regulation. J Clin Endocrinol Metab 2005; 90: 4211-4215
  • 72 Park SE, Cho MA, Kim SH. et al. The adaptation and relationship of FGF-23 to changes in mineral metabolism in Graves’ disease. Clin Endocrinol (Oxf) 2007; 66: 854-858
  • 73 Wang JS, Mazur CM, Wein MN.. Sclerostin and Osteocalcin: Candidate Bone-Produced Hormones.