Laryngorhinootologie 2023; 102(07): 488-495
DOI: 10.1055/a-1861-7379
Übersicht

Therapiekonzepte beim Schilddrüsenkarzinom

Therapy concepts for thyroid carcinoma
Friederike Eilsberger
1   Klinik für Nuklearmedizin, Universitätsklinikum Marburg, Marburg, Germany (Ringgold ID: RIN9377)
,
Michael C Kreissl
2   Abteilung für Nuklearmedizin, Universitätsklinikum Magdeburg, Magdeburg, Germany (Ringgold ID: RIN39067)
,
Markus Luster
3   Nuclearmedicine, University of Marburg, Marburg, Germany (Ringgold ID: RIN9377)
,
Andreas Pfestroff
1   Klinik für Nuklearmedizin, Universitätsklinikum Marburg, Marburg, Germany (Ringgold ID: RIN9377)
› Author Affiliations

Zusammenfassung

Die Theranostik über den Natrium-Iodid-Symporter (NIS) bietet bei differenzierten Schilddrüsenkarzinomen eine einzigartige Option. Die diagnostischen und therapeutischen Nuklide weisen eine übereinstimmende Aufnahme und Kinetik auf, sodass der NIS das wichtigste theranostische Target bei dieser Erkrankung darstellt. Radioiodrefraktäre Schilddrüsenkarzinome (RRTC) zeichnen sich durch eine verminderte/fehlende NIS-Expression aus, sodass diese Struktur als theranostisches Ziel entfällt. Auch aufgrund eingeschränkter therapeutischer Optionen gibt es Ansätze, bei RRTC über die Expression von Somatostatinrezeptoren (SSTR) oder das Prostata-spezifische-Membranantigen (PSMA) neue theranostische Targets zu generieren, jedoch lässt die aktuelle Studienlage eine endgültige Bewertung der Erfolgsaussichten noch nicht zu.

Abstract

Theranostics via the sodium iodide symporter (NIS) offer a unique option in differentiated thyroid carcinoma. The diagnostic and therapeutic nuclides have similar uptake and kinetics, making the NIS the most important theranostic target in this disease. Radioiodine refractory thyroid carcinomas (RRTC) are characterised by reduced/absent NIS expression, thus eliminating this structure as a theranostic target. Also due to limited therapeutic options, there are approaches to generate new theranostic targets in RRTC, via the expression of somatostatin receptors (SSTR) or the prostate-specific membrane antigen (PSMA), but the current evidence does not yet allow a final evaluation of the prospects of success.



Publication History

Received: 01 September 2021

Accepted: 15 September 2021

Article published online:
03 April 2023

© 2021. Thieme. All rights reserved.

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • Literatur

  • 1 Becker DV, Sawin CT. Radioiodine and thyroid disease: the beginning. Semin Nucl Med 1996; 26 (03) 155-164 DOI: 10.1016/s0001-2998(96)80020-1. (PMID: 8829276)
  • 2 Sawin CT, Becker DV. Radioiodine and the treatment of hyperthyreodism: the early history. Thyroid 1997; 7 (02) 163-176
  • 3 Carvalho DP, Dupuy C. Thyroid hormone biosynthesis and release. Mol Cell Endocrinol 15.12.2017; 458: 6-15 DOI: 10.1016/j.mce.2017.01.038.. (PMID: 28153798)
  • 4 Twyffels L, Strickaert A, Virreira M. et al. Anoctamin-1/TMEM16A is the major apical iodide channel of the thyrocyte. Am J Physiol Cell Physiol 2014; 307 (12) C1102-12 DOI: 10.1152/ajpcell.00126.2014. (PMID: 25298423)
  • 5 De la Vieja A, Riesco-Eizaguirre G. Radio-Iodide Treatment: From Molecular Aspects to the Clinical View. Cancers 2021; 13: 995 DOI: 10.3390/cancers13050995. (PMID: 33673669)
  • 6 Lomax ME, Folkes LK, OʼNeill P. Biological consequences of radiation-induced DNA damage: relevance to radiotherapy. Clin Oncol (R Coll Radiol) 2013; 25 (10) 578-585 DOI: 10.1016/j.clon.2013.06.007. (PMID: 23849504)
  • 7 Zhao LM, Pang AX. Iodine-131 treatment of thyroid cancer cells leads to suppression of cell proliferation followed by induction of cell apoptosis and cell cycle arrest by regulation of B-cell translocation gene 2-mediated JNK/NF-κB pathways. Braz J Med Biol Res 2017; 50 (01) e5933 DOI: 10.1590/1414-431X20165933. (PMID: 28099584)
  • 8 Van Nostrand D, Moreau Sm Bandaru VV. et al. (124)I positron emission tomography versus (131)I planar imaging in the identification of residual thyroid tissue and/or metastasis in patients who have well-differentiated thyroid cancer. Thyroid 2010; 20 (08) 879-883 DOI: 10.1089/thy.2009.0430.. (PMID: 20615132)
  • 9 Ruhlmann M, Jentzen W, Ruhlmann V. et al. High Level of Agreement Between Pretherapeutic 124I PET and Intratherapeutic 131I Imaging in Detecting Iodine-Positive Thyroid Cancer Metastases. J Nucl Med 2016; 57 (09) 1339-42 DOI: 10.2967/jnumed.115.169649.. (PMID: 27151981)
  • 10 Jiang H, DeGrado TR. [18 F]Tetrafluoroborate ([ 18 F]TFB) and its analogs for PET imaging of the sodium/iodide symporter. Theranostics 2018; 8 (14) 3918-3931 DOI: 10.7150/thno.24997.. (PMID: 30083270)
  • 11 Luster M, Clarke SE, Dietlein M. et al. Guidelines for radioiodine therapy of differentiated thyroid cancer. Eur J Nucl Med Mol Imaging 2008; 35: 1941-1959 DOI: 10.1007/s00259-008-0883-1. (PMID: 18670773)
  • 12 Iwano S, Kato K, Nihashi T. et al. Comparisons of I-123 diagnostic and I-131 post-treatment scans for detecting residual thyroid tissue and metastases of differentiated thyroid cancer. Ann Nucl Med 2009; 23 (09) 777-782 DOI: 10.1007/s12149-009-0303-z.. (PMID: 19787312)
  • 13 Robertson M, Voss S, Grant F. et al. I-123 and I-131 scintigraphy discordance in pediatric thyroid cancer; effect of previous I-131 therapy. J Nucl Med 2015; 56 (03) 423-423
  • 14 Tuttle RM, Ahuja S, Avram AM. et al. Controversies, Consensus, and Collaboration in the Use of 131I Therapy in Differentiated Thyroid Cancer: A Joint Statement from the American Thyroid Association, the European Association of Nuclear Medicine, the Society of Nuclear Medicine and Molecular Imaging, and the European Thyroid Association. Thyroid 2019; 29 (04) 461-470 DOI: 10.1089/thy.2018.0597. (PMID: 30900516)
  • 15 Verburg FA, Schmidt M, Kreissl MC. et al. Iod-131-Ganzkörperszintigraphie beim differenzierten Schilddrüsenkarzinom. Stand 1/2019, AWMF-Registrierungsnummer: 031–013.
  • 16 Van Nostrand D. Selected Controversies of Radioiodine Imaging and Therapy in Differentiated Thyroid Cancer. Endocrinol Metab Clin N Am 2017; 46: 783-793 DOI: 10.1016/j.ecl.2017.04.007. (PMID: 28760238)
  • 17 Knauf JA, Kuroda H, Basu S. et al. RET/PTC-induced dedifferentiation of thyroid cells is mediated through Y1062 signaling through SHC-RAS-MAP kinase. Oncogene 2003; 22 (28) 4406-4412 DOI: 10.1038/sj.onc.1206602. (PMID: 12853977)
  • 18 Aashiq M, Silverman DA, Naʼara S. et al. Radioiodine-Refractory Thyroid Cancer: Molecular Basis of Redifferentiation Therapies, Management, and Novel Therapies. Cancers (Basel) 2019; 11 (09) 1382 DOI: 10.3390/cancers11091382. (PMID: 31533238)
  • 19 Cabanillas ME, McFadden DG, Durante C. Thyroid cancer. Lancet 2016; 388: 2783-2795 DOI: 10.1016/S0140-6736(16)30172-6. (PMID: 27240885)
  • 20 Chakravarty D, Santos E, Ryder M. et al. Small-molecule MAPK inhibitors restore radioiodine incorporation in mouse thyroid cancers with conditional BRAF activation. J Clin Invest 2011; 121: 4700-4711 DOI: 10.1172/JCI46382. (PMID: 22105174)
  • 21 Ho AL, Grewal RK, Leboeuf R. et al. Selumetinib-enhanced radioiodine uptake in advanced thyroid cancer. N Engl J Med 2013; 368 (07) 623-632 DOI: 10.1056/NEJMoa1209288.. (PMID: 23406027)
  • 22 Vadysirisack DD, Venkateswaran A, Zhang Z. et al. MEK signaling modulates sodium iodide symporter at multiple levels and in a paradoxical manner. Endocrine-Related Cancer 2007; 14: 421-432 DOI: 10.1677/erc.1.01263. (PMID: 17639055)
  • 23 Hou P, Bojdani E, Xing M. Induction of thyroid gene expression and radioiodine uptake in thyroid cancer cells by targeting major signaling pathways. Journal of Clinical Endocrinology and Metabolism 2010; 95: 820-828 DOI: 10.1210/jc.2009-1888. (PMID: 20008023)
  • 24 Fu H, Cheng L, Jin Y. et al. MAPK inhibitors enhance HDAC inhibitor-induced redifferentiation in papillary thyroid cancer cells harboring BRAFV600E: an in vitro study. Molecular Therapy Oncolytics 2019; 12: 235-245 DOI: 10.1016/j.omto.2019.01.007. (PMID: 30847387)
  • 25 Cheng W, Liu R, Zhu G. et al. Robust thyroid gene expression and radioiodine uptake induced by simultaneous suppression of BRAF V600E and histone deacetylase in thyroid cancer cells. Journal of Clinical Endocrinology and Metabolism 2016; 101: 962-971 DOI: 10.1210/jc.2015-3433. (PMID: 26751190)
  • 26 Zhang H, Chen D. Synergistic inhibition of MEK/ERK and BRAF V600E with PD98059 and PLX4032 induces sodium/iodide symporter (NIS) expression and radioiodine uptake in BRAF mutated papillary thyroid cancer cells. Thyroid Research 2018; 11: 13 DOI: 10.1186/s13044-018-0057-6. (PMID: 30337961)
  • 27 Wächter S, Damanakis AI, Elxnat M. et al. Epigenetic modifications in thyroid cancer cells restore NIS and radio-iodine uptake and promote cell death. Journal of Clinical Medicine 2018; 7: E61 DOI: 10.3390/jcm7040061. (PMID: 29561759)
  • 28 Ruan M, Liu M, Dong Q. et al. Iodide- and glucose-handling gene expression regulated by sorafenib or cabozantinib in papillary thyroid cancer. Journal of Clinical Endocrinology and Metabolism 2015; 100: 1771-1779 DOI: 10.1210/jc.2014-3023. (PMID: 25768669)
  • 29 Rothenberg SM, Daniels GH, Wirth LJ. Redifferentiation of iodine-refractory BRAF V600E-mutant metastatic papillary thyroid cancer with Dabrafenib-response. Clinical Cancer Research 2015; 21: 5640-5641 DOI: 10.1158/1078-0432.CCR-15-2298. (PMID: 26672087)
  • 30 Jaber T, Waguespack SG, Cabanillas ME. et al. Targeted therapy in advanced thyroid cancer to resensitize tumors to radioactive iodine. Journal of Clinical Endocrinology and Metabolism 2018; 103: 3698-3705 DOI: 10.1210/jc.2018-00612. (PMID: 30032208)
  • 31 Dunn LA, Sherman EJ, Baxi SS. et al. Vemurafenib redifferentiation of BRAF mutant, RAI-refractory thyroid cancers. Journal of Clinical Endocrinology and Metabolism 2019; 104: 1417-1428 DOI: 10.1210/jc.2018-01478. (PMID: 30256977)
  • 32 Iravani A, Solomon B, Pattison DA. et al. Mitogen-activated protein kinase pathway inhibition for re-differentiation of radioiodinerefractory differentiated thyroid cancer: an evolving protocol. Thyroid 2019; 29: 1634-1645 DOI: 10.1089/thy.2019.0143. (PMID: 31637953)
  • 33 Nagarajah J, Le M, Knauf JA. et al. Sustained ERK inhibition maximizes responses of BrafV600E thyroid cancers to radioiodine. J Clin Invest 2016; 126 (11) 4119-4124 DOI: 10.1172/JCI89067. (PMID: 27669459)
  • 34 Leboulleux S, Cao CD, Zerdoud S. et al. MERAIODE: A Redifferentiation Phase II Trial With Trametinib and Dabrafenib Followed by Radioactive Iodine Administration for Metastatic Radioactive Iodine Refractory Differentiated Thyroid Cancer Patients With a BRAFV600E Mutation (NCT 03244956). J Endocr Soc 2021; 5 (01) 876 DOI: 10.1210/jendso/bvab048.1789.
  • 35 Lakshmanan A, Scarberry D, Green JA. et al. Modulation of thyroidal radioiodide uptake by oncological pipeline inhibitors and apigenin. Oncotarget 2015; 6: 31792-31804 DOI: 10.18632/oncotarget.5172. (PMID: 26397139)
  • 36 Patel PN, Yu XM, Jaskula-Sztul R. et al. Hesperetin activates the Notch1 signaling cascade, causes apoptosis, and induces cellular differentiation in anaplastic thyroid cancer. Annals of Surgical Oncology 2014; 21 (04) 497-504 DOI: 10.1245/s10434-013-3459-7. (PMID: 24419754)
  • 37 Lopez-Campistrous A, Adewuyi EE, Benesch MGK. et al. PDGFRalpha regulates follicular cell differentiation driving treatment resistance and disease recurrence in papillary thyroid cancer. EBiomedicine 2016; 12: 86-97 DOI: 10.1016/j.ebiom.2016.09.007. (PMID: 27682510)
  • 38 Pak K, Shin S, Kim SJ. et al. Response of retinoic acid in patients with radioactive iodinerefractory thyroid cancer: a meta-analysis. Oncology Research and Treatment 2018; 41: 100-104 DOI: 10.1159/000484206. (PMID: 29485411)
  • 39 Rosenbaum-Krumme SJ, Freudenberg LS, Jentzen W. et al. Effects of rosiglitazone on radioiodine negative and progressive differentiated thyroid carcinoma as assessed by 124I PET/CT imaging. Clinical Nuclear Medicine 2012; 37: 47-52 DOI: 10.1097/RLU.0b013e3182443ca6).
  • 40 Kreißl MC, Jentzen W, Janssen M. et al. 124I/131I-Theranostics of Sodium-Iodine-Symporter in Thyroid Cancer. Der Nuklearmediziner 2019; 42: 15-20
  • 41 Barinka C, Sacha P, Sklenar J. et al. Identification of the N-glycosylation Sites on Glutamate Carboxypeptidase II Necessary for Proteolytic Activity. Protein Sci 2004; 13 (06) 1627-1635 DOI: 10.1110/ps.04622104. (PMID: 15152093)
  • 42 Kinoshita Y, Kuratsukuri K, Landas S. et al. Expression of prostate‑specific membrane antigen in normal and malignant human tissues. World J Surg 2006; 30: 628-636
  • 43 Taywade SK, Damle NA, Bal CS. PSMA expression in papillary thyroid carcinoma opening a new horizon in management of thyroid cancer?. Clin Nucl Med 2016; 41: 263-265 DOI: 10.1097/RLU.0000000000001148. (PMID: 26914556)
  • 44 Heitkötter B, Seinestel K, Trautmann M. et al. Neovascular PSMA expression is a common feature in malignant neoplasms of the thyroid. Oncotarget 2018; 9 (11) 9867-9874 DOI: 10.18632/oncotarget.23984.
  • 45 Sollini M, di Tommaso L, Kirienko M. et al. PSMA expression level predicts differentiated thyroid cancer aggressiveness and patient outcome. EJNMMI Res 2019; 9 (01) 93 DOI: 10.1186/s13550-019-0559-9. (PMID: 31617002)
  • 46 Morris MJ, De Bono JS, Chi KN. et al. Phase III study of lutetium-177-PSMA-617 in patients with metastatic castration-resistant prostate cancer (VISION). Abstract LBA4. Presented at the ASCO Virtual Annual Meeting. 2021
  • 47 Lütje S, Gomez B, Cohen J. et al. Imaging of Prostate-Specific Membrane Antigen Expression in Metastatic Differentiated Thyroid Cancer Using 68Ga-HBED-CC-PSMA PET/CT. Clin Nucl Med 2017; 42 (01) 20-25 DOI: 10.1097/RLU.0000000000001454..
  • 48 De Vries L, Lodewijk L, Braat AJAT. et al. 68 Ga-PSMA PET/CT in radioactive iodine-refractory differentiated thyroid cancer and first treatment results with 177 Lu-PSMA-617. EJNMMI Res 2020; 10 (01) 18 DOI: 10.1186/s13550-020-0610-x.. (PMID: 32144510)
  • 49 Damle NA, Bal CB, Singh TP. et al. Anaplastic thyroid carcinoma on 68 Ga-PSMA PET/CT: opening new frontiers. Eur J Nucl Med Mol Imaging 2018; 45: 667-668 DOI: 10.1007/s00259-017-3904-0. (PMID: 29294167)
  • 50 Strosberg J, El-Haddad G, Wolin E. et al. Phase 3 Trial of 177 Lu-Dotatate for Midgut Neuroendocrine Tumors. N Engl J Med 2017; 376 (02) 125-135 DOI: 10.1056/NEJMoa1607427.. (PMID: 28076709)
  • 51 Krenning EP, De Jong E, Kooij PPM. et al. Radiolabelled somatostatin analogue(s) for peptide receptor scintigraphy and radionuclide therapy. ANN Oncol 1999; 10: 23-29 DOI: 10.1093/annonc/10.suppl_2.s23. (PMID: 10399029)
  • 52 Teunissen JJM, Kwekkeboom DJ, Kooil PPM. et al. Peptide Receptor Radionuclide Therapy for Non–Radioiodine-Avid Differentiated Thyroid Carcinoma. J Nucl Med 2005; 46: 107-114
  • 53 Budiawan H, Salavati A, Kulkarni HR. et al. Peptide receptor radionuclide therapy of treatment-refractory metastatic thyroid cancer using 90-Yttrium and 177-Lutetium labeled somatostatin analogs: toxicity, response and survival analysis. Am J Nucl Med Mol Imaging 2014; 4: 39-52
  • 54 Versari A, Sollini M, Frasoldati A. et al. Differentiated thyroid cancer: a new perspective with radiolabeled somatostatin analogues for imaging and treatment of patients. Thyroid 2014; 24: 715-726 DOI: 10.1089/thy.2013.0225. (PMID: 24102584)
  • 55 Jois B, Asopa R, Basu S. Somatostatin receptor imaging in non-(131)I-avid metastatic differentiated thyroid carcinoma for determining the feasibility of peptide receptor radionuclide therapy with (177)Lu-DOTATATE: low fraction of patients suitable for peptide receptor radionuclide therapy and evidence of chromogranin A level-positive neuroendocrine differentiation. Clin Nucl Med 2014; (39) 505-510 DOI: 10.1097/RLU.0000000000000429. (PMID: 24662668)
  • 56 Werner RA, Solnes LB, Javadi MS. et al. SSTR-RADS Version 1.0 as a Reporting System for SSTR PET Imaging and Selection of Potenzial PRRT Candidates: A Proposed Standardization Framework. J Nucl Med 2018; 59 (07) 1085-1091 DOI: 10.2967/jnumed.117.206631.. (PMID: 29572257)
  • 57 Binse I, Poeppel TD, Ruhlmann M. et al. 68Ga-DOTATOC PET/CT in Patients with Iodine- and 18F-FDG-Negative Differentiated Thyroid Carcinoma and Elevated Serum Thyroglobulin. J Nucl Med 2016; 57: 1512-1517 DOI: 10.2967/jnumed.115.171942. (PMID: 27033897)
  • 58 Itel F, Müller B, Schindler C. et al. Response to [90Yttrium-DOTA]-TOC treatment is associated with long-term survival benefit in metastasized medullary thyroid cancer: a phase II clinical trial. Clin Cancer Res 2007; 13: 6696-6702
  • 59 Beukhof CM, Brabander T, Van Nederveen FH. et al. Peptide receptor radionuclide therapy in patients with medullary thyroid carcinoma: predictors and pitfalls. BMC Cancer 2019; 19 (01) 325 DOI: 10.1186/s12885-019-5540-5. (PMID: 30953466)
  • 60 Mato E, Matias-Guiu X, Chico A. et al. Somatostatin and somatostatin receptor subtype gene expression in medullary thyroid carcinoma. J Clin Endocrinol Metab 1998; 83 (07) 2417-2420 DOI: 10.1210/jcem.83.7.4955. (PMID: 9661621)
  • 61 Papotti M, Kumar U, Volante M. et al. Immunohistochemical detection of somatostatin receptor types 1–5 in medullary carcinoma of the thyroid. Clin Endocrinol (Oxf) 2001; 54 (05) 641-649 DOI: 10.1046/j.1365-2265.2001.01175.x. (PMID: 11380495)
  • 62 Weineisen M, Schottelius M, Simecek J. et al. 68Ga- and 177Lu-Labeled PSMA I%T: Optimization of a PSMA-Targeted Theranostic Concept and First Proof-of-Concept Human Studies. J Nucl Med 2015; 56 (08) 1169-1176 DOI: 10.2967/jnumed.115.158550. (PMID: 26089548)
  • 63 Umbrich CA, Benesova M, Schmid RM. et al. 44Sc-PSMA-617 for radiotheranostics in tandem with 177Lu-PSMA-617 – preclinical investigation in comparison with 68Ga-PSMA-11 and 68Ga-PSMA-617. EJNMMI Res 2017; 7: 9
  • 64 Bravo PE, Goudarzi B, Rana U. et al. Clinical significance of discordant findings between pre-therapy (123)I and post-therapy (131)I whole body scan in patients with thyroid cancer. Int J Clin Exp Med 2013; 6 (05) 320-333
  • 65 Maffey-Steffan J, Scarpa L, Svirydenka A. et al. The 68 Ga/177 Lu-theragnostic concept in PSMA-targeting of metastatic castration-resistant prostate cancer: impact of post-therapeutic whole-body scintigraphy in the follow-up. Eur J Nucl Med Mol Imaging 2020; 47 (03) 695-712 DOI: 10.1007/s00259-019-04583-2. (PMID: 31776632)
  • 66 Sainz-Esteban A, Prasas V, Schuchardt C. et al. Comparison of sequential planar 177Lu-DOTA-TATE dosimetry scans with 68Ga-DOTA-TATE PET/CT images in patients with metastasized neuroendocrine tumours undergoing peptide receptor radionuclide therapy. Eur J Nucl Med Mol Imaging 2012; 39 (03) 501-511