Tierarztl Prax Ausg K Kleintiere Heimtiere 2022; 50(02): 93-100
DOI: 10.1055/a-1807-9546
Originalartikel

Utility of a canine TSH assay for diagnosis and monitoring of feline hyperthyroidism

Nutzen eines caninen TSH-Assays zur Diagnose und Therapieüberwachung der felinen Hyperthyreose
Tobias Urbanschitz
1   Tierärztliche Klinik Ahlen, Ahlen, Germany
,
Iwan A. Burgener
2   Department for Small Animals and Horses, University of Veterinary Medicine, Division of small animal internal medicine, Vienna, Austria
,
Florian K. Zeugswetter
2   Department for Small Animals and Horses, University of Veterinary Medicine, Division of small animal internal medicine, Vienna, Austria
› Author Affiliations

Abstract

Objective This retrospective study was initiated to evaluate the utility of TSH measurements using a common canine TSH assay to diagnose and monitor feline hyperthyroidism after radioiodine or thyreostatic drug treatment.

Material and methods The electronic database of the University of Veterinary Medicine Vienna was searched for combined TSH and T4 measurements. 217 pairs of TSH and T4 from 136 cats with possible hyperthyroidism were assigned to group A (untreated; n = 24) and B (treated; n = 193). Measurements in group B were then subcategorized according to T4 concentrations (reference range 15–50 nmol/L): group B1 = elevated T4 (n = 46), group B2 = normal T4 (n = 84) and group B3 = decreased T4 (n = 63). Group B2 was further divided into cats with low normal (group B2a; n = 35), medium normal (group B2b; n = 29) and high normal (group B2c; n = 20) T4 concentrations.

Results TSH was detectable in 4 (17 %) of the 24 untreated cats (group A) and did not return to normal despite seemingly successful therapy in two. Increased TSH concentrations were observed in 3.6 % of the treated cats in group B2 and 2.9 %, 6.9 %, and 0 % in subgroups B2a, B2b and B2c, respectively. Forty-four percent of the treated cats with a decreased T4 (group B3) had an increased TSH concentration. TSH correlated with treatment length (r = 0.358, p = 0.004) and was significantly higher in cats treated for more than 3 months (p = 0.008).

Conclusion TSH was detectable in a significant number of untreated hyperthyroid cats and thus this parameter should not be used to definitively rule out feline hyperthyroidism. Furthermore, the very low prevalence of increased TSH concentrations in treated hyperthyroid cats with a normal T4 and cost benefit calculations do not support the routine measurement of TSH in these cats. The fact that TSH correlated with time since treatment start and 56 % of the cats with a decreased T4 had TSH concentrations within the reference limits, suggests delayed recovery of the pituitary thyrotrophs which might explain the low prevalence of subclinical hypothyroidism in the present study.

Clinical relevance TSH measurement in cats with suspected or treated hyperthyroidism using a canine assay lacks diagnostic sensitivity and can only complement therapeutic decision-making.

Zusammenfassung

Gegenstand und Ziel In dieser retrospektiven Studie wurde die Eignung eines caninen TSH-Assays zur Diagnose und Therapieüberwachung der felinen Hyperthyreose nach Radiojod- oder Thyreostatikatherapie untersucht.

Material und Methoden Das elektronische Datenerfassungssystem der Veterinärmedizinischen Universität Wien wurde auf Paare von TSH- und T4-Werten bei Katzen durchsucht. 217 Paare von 136 Katzen wurden in die Gruppen A (unbehandelt; n = 24) und B (behandelt; n = 193) unterteilt. Messwerte in Gruppe B wurden anschließend anhand ihrer T4-Konzentrationen subkategorisiert (Referenzbereich: 15–50 nmol/l): Gruppe B1 = erhöhtes T4 (n = 46), Gruppe B2 = normales T4 (n = 84) und Gruppe B3 = erniedrigtes T4 (n = 63). Des Weiteren erfolgte eine Unterteilung der Gruppe B2 in Tiere mit T4 Konzentrationen im unteren (Gruppe B2a; n = 35), mittleren (Gruppe B2b; n = 29) und oberen Drittel (Gruppe B2c; n = 20) des Referenzbereiches.

Ergebnisse Unter den unbehandelten Katzen hatten 4 (17 %) von 24 Tieren ein messbares TSH, welches bei zwei Katzen auch unter scheinbar erfolgreicher Therapie nicht in den Normalbereich zurückkehrte. Bei 3,6 % der therapierten Katzen in Gruppe B2 sowie bei 2,9 %, 6,9 % und 0 % der jeweiligen Subgruppen B2a, B2b und B2c wurde ein erhöhtes TSH beobachtet. Vierundvierzig Prozent der behandelten Katzen mit erniedrigtem T4 zeigten ein erhöhtes TSH. TSH korrelierte mit der Dauer der vorangegangenen Therapie (r = 0,358, p = 0,004) und war signifikant höher bei Katzen mit einer Therapiedauer über 3 Monate (p = 0,008).

Schlussfolgerung TSH ist kein verlässlicher Parameter zum Ausschluss der felinen Hyperthyreose. Die niedrige Prävalenz von erhöhten TSH-Konzentrationen und Kosten-Nutzen-Rechnungen sprechen gegen die routinemäßige Bestimmung von TSH bei behandelten Katzen mit normalem T4. Die positive Korrelation von TSH mit der Therapiedauer und normale TSH-Konzentrationen bei 56 % der Katzen mit einer erniedrigten T4 deuten auf eine verzögerte Erholung der thyreotrophen Zellen und erklären möglicherweise die niedrige Prävalenz von subklinischen Hypothyreosen in dieser Studie.

Klinische Relevanz Die TSH-Messung mittels caninem Assay bei Katzen mit vermuteter oder behandelter Hyperthyreose ist wenig verlässlich und kann die therapeutische Entscheidungsfindung nur ergänzen.



Publication History

Received: 09 February 2021

Accepted: 23 June 2021

Article published online:
06 May 2022

© 2022. Thieme. All rights reserved.

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

  • 1 Peterson M. Hyperthyroidism in cats: what’s causing this epidemic of thyroid disease and can we prevent it?. J Feline Med Surg 2012; 14: 804-818
  • 2 Peterson ME, Guterl JN, Nichols R. et al. Evaluation of Serum Thyroid-Stimulating Hormone Concentration as a Diagnostic Test for Hyperthyroidism in Cats. J Vet Intern Med 2015; 29: 1327-1334
  • 3 Carney HC, Ward CR, Bailey SJ. et al. 2016 AAFP Guidelines for the Management of Feline Hyperthyroidism. J Feline Med Surg 2016; 18: 400-416
  • 4 Daminet S, Kooistra HS, Fracassi F. et al. Best practice for the pharmacological management of hyperthyroid cats with antithyroid drugs. J Small Anim Pract 2014; 55: 4-13
  • 5 Higgs P, Murray JK, Hibbert A. Medical management and monitoring of the hyperthyroid cat: a survey of UK general practitioners. J Feline Med Surg 2014; 16: 788-795
  • 6 Kopecny L, Higgs P, Hibbert A. et al. Management and monitoring of hyperthyroid cats: a survey of Australian veterinarians. J Feline Med Surg 2017; 19: 559-567
  • 7 Fernandez Y, Puig J, Powell R. et al. Prevalence of iatrogenic hypothyroidism in hyperthyroid cats treated with radioiodine using an individualised scoring system. J Feline Med Surg 2019; 21: 1149-1156
  • 8 Lucy JM, Peterson ME, Randolph JF. et al. Efficacy of Low-dose (2 millicurie) versus Standard-dose (4 millicurie) Radioiodine Treatment for Cats with Mild-to-Moderate Hyperthyroidism. J Vet Intern Med 2017; 31: 326-334
  • 9 Aldridge C, Behrend EN, Martin LG. et al. Evaluation of thyroid-stimulating hormone, total thyroxine, and free thyroxine concentrations in hyperthyroid cats receiving methimazole treatment. J Vet Intern Med 2015; 29: 862-868
  • 10 Williams TL, Elliott J, Syme HM. Association of iatrogenic hypothyroidism with azotemia and reduced survival time in cats treated for hyperthyroidism. J Vet Intern Med 2010; 24: 1086-1092
  • 11 Peterson ME, Nichols R, Rishniw M. Serum thyroxine and thyroid-stimulating hormone concentration in hyperthyroid cats that develop azotaemia after radioiodine therapy. J Small Anim Pract 2017; 58: 519-530
  • 12 Wakeling J, Hall T, Williams TL. Correlation of thyroid hormone measurements with thyroid stimulating hormone stimulation test results in radioiodine-treated cats. J Vet Intern Med 2020; 34: 2265-2275
  • 13 Ferguson DC, Caffall Z, Hoenig M. Obesity increases free thyroxine proportionally to nonesterified fatty acid concentrations in adult neutered female cats. J Endocrinol 2007; 194: 267-273
  • 14 Wakeling J, Moore K, Elliott J. et al. Diagnosis of hyperthyroidism in cats with mild chronic kidney disease. J Small Anim Pract 2008; 49: 287-294
  • 15 Puille M, Auch D, Pillmann T. et al. Determination of TSH and free thyroid hormones in the diagnosis of feline hyperthyroidism. 2000
  • 16 Stammeleer L, Buresova E, Stock E. et al. Comparison of free thyroxine measurement by chemiluminescence and equilibrium dialysis following 131I therapy in hyperthyroid cats. J Feline Med Surg 2020; 1098612X20906929
  • 17 Peterson ME. More Than Just T4: Diagnostic testing for hyperthyroidism in cats. J Feline Med Surg 2013; 15: 765-777
  • 18 Peterson ME, Broome MR. Thyroid scintigraphy findings in 2096 cats with hyperthyroidism. Vet Radiol Ultrasound 2015; 56: 84-95
  • 19 Singh AK, Jiang Y, White T. et al. Validation of nonradioactive chemiluminescent immunoassay methods for the analysis of thyroxine and cortisol in blood samples obtained from dogs, cats, and horses. J Vet Diagn Invest 1997; 9: 261-268
  • 20 Mooney CT, Little CJ, Macrae AW. Effect of illness not associated with the thyroid gland on serum total and free thyroxine concentrations in cats. J Am Vet Med Assoc 1996; 208: 2004-2008
  • 21 Krishnan SGS, Pathalapati R, Kaplan L. et al. Falsely raised TSH levels due to human anti-mouse antibody interfering with thyrotropin assay. Postgrad Med J 2006; 82: e27-e27
  • 22 García-González E, Aramendía M, Álvarez-Ballano D. et al. Serum sample containing endogenous antibodies interfering with multiple hormone immunoassays. Laboratory strategies to detect interference. Pract Lab Med 2016; 4: 1-10
  • 23 Mete O, Cintosun A, Pressman I. et al. Epidemiology and biomarker profile of pituitary adenohypophysial tumors. Mod Pathol 2018; 31: 900-909
  • 24 Accurate results in the clinical laboratory: a guide to error detection and correction. London; Waltham, MA: Elsevier; 2013
  • 25 Bergman D, Larsson A, Hansson-Hamlin H. et al. Prevalence of interfering antibodies in dogs and cats evaluated using a species-independent assay. Vet Clin Pathol 2018; 47: 205-212
  • 26 Lopez NA, Jacobson RH. False-positive reactions associated with anti-mouse activity in serotests for feline leukemia virus antigen. J Am Vet Med Assoc 1989; 195: 741-746
  • 27 Zeugswetter FK, Hittmair KM, Patzl M. Spuriously high thyroid hormone concentrations measured by chemiluminescent immunoassay attributable to anti-iodothyronine antibodies in a dog. Vet Rec Case Rep 2017; 4
  • 28 Peterson ME, Carothers MA, Gamble DA. et al. Spontaneous primary hypothyroidism in 7 adult cats. J Vet Intern Med 2018; 32: 1864-1873
  • 29 van Hoek IM, Vandermeulen E, Peremans K. et al. Thyroid stimulation with recombinant human thyrotropin in healthy cats, cats with non-thyroidal illness and in cats with low serum thyroxin and azotaemia after treatment of hyperthyroidism. J Feline Med Surg 2010; 12: 117-121
  • 30 Stegeman JR, Graham PA, Hauptman JG. Use of recombinant human thyroid-stimulating hormone for thyrotropin-stimulation testing of euthyroid cats. Am J Vet Res 2003; 64: 149-152
  • 31 Peterson ME, Davignon DL, Shaw N. et al. Serum thyroxine and thyrotropin concentrations decrease with severity of nonthyroidal illness in cats and predict 30-day survival outcome. J Vet Intern Med 2020; jvim.15917