Osteologie 2022; 31(02): 89-93
DOI: 10.1055/a-1717-0793
Review

The Role of Tissue-Nonspecific Alkaline Phosphatase in Dental Tissue: A Review of Recent Literature

Die Funktion der gewebeunspezifischen Alkalischen Phosphatase im Zahngewebe: Eine Übersicht der aktuellen Literatur
Stephanie Graser
1   Bernhard-Heine-Center for Locomotion Research, Julius Maximilians University Würzburg, Würzburg, Germany
,
Elisa Riekert
2   Institut für Humangenetik, Julius Maximilians University Würzburg, Würzburg, Germany
,
Daniel Liedtke
2   Institut für Humangenetik, Julius Maximilians University Würzburg, Würzburg, Germany
› Author Affiliations

Abstract

This brief review describes the role of tissue-nonspecific alkaline phosphatase (TNAP) during dental development. Mutations within the ALPL gene, which is encoding the human ectoenzyme TNAP, lead to the rare disease Hypophosphatasia (HPP). Apart from the most prominent bone hypomineralization, the characteristic symptoms of HPP often include a dental phenotype. To investigate the molecular causes of distinct HPP symptoms in closer detail, a number of transgenic models in different animals are established, like mice (Mus musculus) and zebrafish (Danio rerio). We therefore also compare the processes of dental development in humans, mice, and zebrafish.

Zusammenfassung

In dieser kurzen Übersichtsarbeit wird die Rolle der gewebeunspezifischen Alkalischen Phosphatase (TNAP) bei der Zahnentwicklung beschrieben. Mutationen im ALPL-Gen, welches für das humane Ektoenzym TNAP codiert, sind verantwortlich für das Auftreten der seltenen Erbkrankheit Hypophosphatasie (HPP), deren Symptomatik häufig, neben einer prominenten Hypomineralisierung der Knochen, auch einen dentalen Phänotyp beinhaltet. Um den molekularbiologischen Ursachen der HPP Symptome weiter auf den Grund zu gehen, werden verschiedene Modellorganismen genutzt, wie Maus (Mus musculus) und Zebrafisch (Danio rerio). Wir vergleichen daher im Folgenden auch die Zahnentwicklung zwischen Menschen, Maus und Zebrafisch.



Publication History

Received: 28 October 2021

Accepted: 08 December 2021

Article published online:
03 February 2022

© 2022. Thieme. All rights reserved.

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

  • 1 Millan JL, Whyte MP. Alkaline Phosphatase and Hypophosphatasia. Calcif Tissue Int 2016; 98: 398-416
  • 2 Whyte MP, Leung E, Wilcox WR, Liese J, Argente J, Martos-Moreno GA. et al. Natural History of Perinatal and Infantile Hypophosphatasia: A Retrospective Study. J Pediatr 2019; 209: 116-24
  • 3 Bianchi ML, Bishop NJ, Guanabens N, Hofmann C, Jakob F, Roux C. et al. Hypophosphatasia in adolescents and adults: overview of diagnosis and treatment. Osteoporos Int 2020; 31: 1445-1460
  • 4 Mornet E, Hofmann C, Bloch-Zupan A, Girschick H, Le Merrer M. Clinical utility gene card for: hypophosphatasia – update 2013. Eur J Hum Genet 2014; 22
  • 5 Mornet E, Yvard A, Taillandier A, Fauvert D, Simon-Bouy B. A molecular-based estimation of the prevalence of hypophosphatasia in the European population. Ann Hum Genet 2011; 75: 439-445
  • 6 Mornet E, Taillandier A, Domingues C, Dufour A, Benaloun E, Lavaud N. et al. Hypophosphatasia: a genetic-based nosology and new insights in genotype-phenotype correlation. Eur J Hum Genet 2021; 29: 289-299
  • 7 Narisawa S, Yadav MC, Millan JL. In vivo overexpression of tissue-nonspecific alkaline phosphatase increases skeletal mineralization and affects the phosphorylation status of osteopontin. J Bone Miner Res 2013; 28: 1587-1598
  • 8 Favarin BZ, Bolean M, Ramos AP, Magrini A, Rosato N, Millan JL. et al. Lipid composition modulates ATP hydrolysis and calcium phosphate mineral propagation by TNAP-harboring proteoliposomes. Arch Biochem Biophys 2020; 691: 108482
  • 9 Harmey D, Hessle L, Narisawa S, Johnson KA, Terkeltaub R, Millan JL. Concerted regulation of inorganic pyrophosphate and osteopontin by akp2, enpp1, and ank: an integrated model of the pathogenesis of mineralization disorders. Am J Pathol 2004; 164: 1199-1209
  • 10 Yadav MC, Simao AM, Narisawa S, Huesa C, McKee MD, Farquharson C. et al. Loss of skeletal mineralization by the simultaneous ablation of PHOSPHO1 and alkaline phosphatase function: a unified model of the mechanisms of initiation of skeletal calcification. J Bone Miner Res 2011; 26: 286-297
  • 11 Le DuMH, Stigbrand T, Taussig MJ, Menez A, Stura EA. Crystal structure of alkaline phosphatase from human placenta at 1.8 A resolution. Implication for a substrate specificity. J Biol Chem 2001; 276: 9158-9165
  • 12 Jheon AH, Seidel K, Biehs B, Klein OD. From molecules to mastication: the development and evolution of teeth. Wiley Interdiscip Rev Dev Biol 2013; 2: 165-182
  • 13 Lüllmann-Rauch R, Asan E. Taschenbuch Histologie 2012; 726 p
  • 14 Reibel A, Maniere MC, Clauss F, Droz D, Alembik Y, Mornet E. et al. Orodental phenotype and genotype findings in all subtypes of hypophosphatasia. Orphanet J Rare Dis 2009; 4: 6
  • 15 Vogt M, Girschick H, Schweitzer T, Benoit C, Holl-Wieden A, Seefried L. et al. Pediatric hypophosphatasia: lessons learned from a retrospective single-center chart review of 50 children. Orphanet J Rare Dis 2020; 15: 212
  • 16 McKee MD, Yadav MC, Foster BL, Somerman MJ, Farquharson C, Millan JL. Compounded PHOSPHO1/ALPL deficiencies reduce dentin mineralization. J Dent Res 2013; 92: 721-727
  • 17 Kramer K, Chavez MB, Tran AT, Farah F, Tan MH, Kolli TN. et al. Dental defects in the primary dentition associated with hypophosphatasia from biallelic ALPL mutations. Bone. 2021; 143: 115732
  • 18 Melms H, Herrmann M, Forstner K, Bharti R, Schneider D, Mentrup B. et al. Novel molecular cues for dental defects in hypophosphatasia. Exp Cell Res 2020; 392: 112026
  • 19 Foster BL, Nagatomo KJ, Tso HW, Tran AB, Nociti FH, Narisawa S. et al. Tooth root dentin mineralization defects in a mouse model of hypophosphatasia. J Bone Miner Res 2013; 28: 271-282
  • 20 Olsson A, Matsson L, Blomquist HK, Larsson A, Sjodin B. Hypophosphatasia affecting the permanent dentition. J Oral Pathol Med 1996; 25: 343-347
  • 21 Chu EY, Vo TD, Chavez MB, Nagasaki A, Mertz EL, Nociti FH. et al. Genetic and pharmacologic modulation of cementogenesis via pyrophosphate regulators. Bone. 2020; 136: 115329
  • 22 Valenza G, Burgemeister S, Girschick H, Schoen C, Veihelmann S, Moter A. et al. Analysis of the periodontal microbiota in childhood-type hypophosphatasia. Int J Med Microbiol 2006; 296: 493-500
  • 23 Pettengill M, Matute JD, Tresenriter M, Hibbert J, Burgner D, Richmond P. et al. Human alkaline phosphatase dephosphorylates microbial products and is elevated in preterm neonates with a history of late-onset sepsis. PLoS One 2017; 12: e0175936
  • 24 Diez-Zaera M, Diaz-Hernandez JI, Hernandez-Alvarez E, Zimmermann H, Diaz-Hernandez M, Miras-Portugal MT. Tissue-nonspecific alkaline phosphatase promotes axonal growth of hippocampal neurons. Mol Biol Cell 2011; 22: 1014-1024
  • 25 Graser S, Liedtke D, Jakob F. TNAP as a New Player in Chronic Inflammatory Conditions and Metabolism. Int J Mol Sci 2021; 22: 2
  • 26 Tomlinson MJ, Dennis C, Yang XB, Kirkham J. Tissue non-specific alkaline phosphatase production by human dental pulp stromal cells is enhanced by high density cell culture. Cell Tissue Res 2015; 361: 529-540
  • 27 Okawa R, Kokomoto K, Kitaoka T, Kubota T, Watanabe A, Taketani T. et al. Japanese nationwide survey of hypophosphatasia reveals prominent differences in genetic and dental findings between odonto and non-odonto types. PLoS One 2019; 14: e0222931
  • 28 Takagi M, Kato S, Muto T, Sano Y, Akiyama T, Takagi J. et al. Odontohypophosphatasia treated with asfotase alfa enzyme replacement therapy in a toddler: a case report. Clin Pediatr Endocrinol 2020; 29: 115-118
  • 29 McKee MD, Nakano Y, Masica DL, Gray JJ, Lemire I, Heft R. et al. Enzyme replacement therapy prevents dental defects in a model of hypophosphatasia. J Dent Res 2011; 90: 470-476
  • 30 Gasque KC, Foster BL, Kuss P, Yadav MC, Liu J, Kiffer-Moreira T. et al. Improvement of the skeletal and dental hypophosphatasia phenotype in Alpl-/- mice by administration of soluble (non-targeted) chimeric alkaline phosphatase. Bone. 2015; 72: 137-147
  • 31 Caton J, Tucker AS. Current knowledge of tooth development: patterning and mineralization of the murine dentition. J Anat 2009; 214: 502-515
  • 32 Krivanek J, Soldatov RA, Kastriti ME, Chontorotzea T, Herdina AN, Petersen J. et al. Dental cell type atlas reveals stem and differentiated cell types in mouse and human teeth. Nat Commun 2020; 11: 4816
  • 33 Hotton D, Mauro N, Lezot F, Forest N, Berdal A. Differential expression and activity of tissue-nonspecific alkaline phosphatase (TNAP) in rat odontogenic cells in vivo. J Histochem Cytochem 1999; 47: 1541-1552
  • 34 Zweifler LE, Patel MK, Nociti FH, Wimer HF, Millan JL, Somerman MJ. et al. Counter-regulatory phosphatases TNAP and NPP1 temporally regulate tooth root cementogenesis. Int J Oral Sci 2015; 7: 27-41
  • 35 Fong H, Foster BL, Sarikaya M, Somerman MJ. Structure and mechanical properties of Ank/Ank mutant mouse dental tissues--an animal model for studying periodontal regeneration. Arch Oral Biol 2009; 54: 570-576
  • 36 Liu H, Li J, Lei H, Zhu T, Gan Y, Ge L. Genetic etiology and dental pulp cell deficiency of hypophosphatasia. J Dent Res 2010; 89: 1373-1377
  • 37 Ohlebusch B, Borst A, Frankenbach T, Klopocki E, Jakob F, Liedtke D. et al. Investigation of alpl expression and Tnap-activity in zebrafish implies conserved functions during skeletal and neuronal development. Sci Rep 2020; 10: 13321
  • 38 Huysseune A, Sire JY. Evolution of patterns and processes in teeth and tooth-related tissues in non-mammalian vertebrates. Eur J Oral Sci 1998; 106: 437-481
  • 39 Fraser GT. AP. Evolution, Development and Regeneration of Fish Dentitions. In: Z. Johanson CU, & M. Richter editor. Evolution and Development of Fishes. Cambridge University Press; 2019. p. 160-171
  • 40 Huysseune A, Van der heyden C, Sire JY. Early development of the zebrafish (Danio rerio) pharyngeal dentition (Teleostei, Cyprinidae). Anat Embryol (Berl) 1998; 198: 289-305
  • 41 Van der Heyden C, Allizard F, Sire JY, Huysseune A. Tooth development in vitro in two teleost fish, the cichlid Hemichromis bimaculatus and the cyprinid Danio rerio. Cell Tissue Res 2005; 321: 375-389
  • 42 Stock DW. Zebrafish dentition in comparative context. J Exp Zool B Mol Dev Evol 2007; 308: 523-549
  • 43 Huysseune A, Cerny R, Witten PE. The conundrum of pharyngeal teeth origin: the role of germ layers, pouches, and gill slits. Biol Rev Camb Philos Soc. 2021
  • 44 Verstraeten B, Sanders E, van Hengel J, Huysseune A. Zebrafish teeth as a model for repetitive epithelial morphogenesis: dynamics of E-cadherin expression. BMC Dev Biol 2010; 10: 58 doi: 10.1186/1471-213X-10-58
  • 45 Square TA, Sundaram S, Mackey EJ, Miller CT. Distinct tooth regeneration systems deploy a conserved battery of genes. Evodevo. 2021; 12: 4
  • 46 Smith MM, Fraser GJ, Mitsiadis TA. Dental lamina as source of odontogenic stem cells: evolutionary origins and developmental control of tooth generation in gnathostomes. J Exp Zool B Mol Dev Evol 2009; 312B: 260-280
  • 47 Jernvall J, Thesleff I. Tooth shape formation and tooth renewal: evolving with the same signals. Development. 2012; 139: 3487-3497
  • 48 Huysseune A, Van der Heyden C, Verreijdt L, Wautier K, Van Damme N. Fish dentitions as paradigms for odontogenic questions. Connect Tissue Res 2002; 43: 98-102
  • 49 Apschner A, Huitema LF, Ponsioen B, Peterson-Maduro J, Schulte-Merker S. Zebrafish enpp1 mutants exhibit pathological mineralization, mimicking features of generalized arterial calcification of infancy (GACI) and pseudoxanthoma elasticum (PXE). Dis Model Mech 2014; 7: 811-822
  • 50 Venkatesh B, Lee AP, Ravi V, Maurya AK, Lian MM, Swann JB. et al. Elephant shark genome provides unique insights into gnathostome evolution. Nature. 2014; 505: 174-179