Subscribe to RSS
DOI: 10.1055/a-1659-9295
3-D-Druck-gestützte Frakturversorgung in der Unfallchirurgie und Orthopädie
3D-Printing Supported Fracture Treatment in Trauma Surgery and Orthopedics
Zusammenfassung
Der 3-D-Druck gewinnt im klinischen Umfeld zunehmend an Bedeutung. Vor allem die muskuloskelettale Chirurgie erlebt bei der Diagnostik, Planung und Versorgung von Frakturen und komplexen Rekonstruktionseingriffen mit Hilfe 3-D-gedruckter Modelle einen technologischen Aufschwung. Dieser Artikel befasst sich mit den aktuellen Entwicklungen der 3-D-Druck-Technologie und deren Anwendung im klinischen Umfeld.
Abstract
The treatment success of complex musculoskeletal pathologies depends significantly on reliable and valid preoperative diagnostics and planning. In this context, 3D printing is emerging as a clinical convincing technology for rapid prototyping of pathology models and surgical implantable products. Applications in orthopedic surgery range from simple fracture or pathology models for surgical planning and patient education to intraoperative tools and implants. This article deals with the basics of the 3D printing technology, its current applications in clinical practice and the promising future prospects.
Schlüsselwörter
3-D-Druck - computergestützte Chirurgie - Unfallchirurgie - rapid prototyping - präoperative Planung - additive Fertigung - Computer aided designKey words
3D printing - computer assisted surgery - orthopedic surgery - rapid prototyping - surgical planning - additive manufacturing - computer aided designPublication History
Article published online:
30 May 2022
© 2022. Thieme. All rights reserved.
Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany
-
Literatur
- 1 Søreide K, Krüger AJ, Vårdal AL. et al. Epidemiology and contemporary patterns of trauma deaths: changing place, similar pace, older face. World J Surg 2007; 31: 2092-2103
- 2 Helfet DL, Haas NP, Schatzker J. et al. AO philosophy and principles of fracture management-its evolution and evaluation. J Bone Joint Surg Am 2003; 85: 1156-1160
- 3 Castiglia MT, Nogueira-Barbosa MH, Messias AMV. et al. The Impact of Computed Tomography on Decision Making in Tibial Plateau Fractures. J Knee Surg 2018; 31: 1007-1014
- 4 Brouwers L, Pull ter Gunne A, Jongh M. et al. The Value of 3D Printed Models in Understanding Acetabular Fractures. 3D Printing and Additive Manufacturing 2018; 5: 37-46
- 5 Ansari S, Barik S, Singh SK. et al. Role of 3D printing in the management of complex acetabular fractures: a comparative study. Eur J Trauma Emerg Surg 2021; 47: 1291-1296
- 6 Li C, Kui C, Lee E. et al. The role of 3D printing in anatomy education and surgical training: A narrative review. MedEdPublish 2017; 6
- 7 Authen AL, Dybvik E, Furnes O. et al. Surgeonʼs experience level and risk of reoperation after hip fracture surgery: an observational study on 30,945 patients in the Norwegian Hip Fracture Register 2011–2015. Acta Orthop 2018; 89: 496-502
- 8 Yang S, Lin H, Luo C. Meta-Analysis of 3D Printing Applications in Traumatic Fractures. Front Surg 2021; 8: 696391
- 9 Zheng W, Su J, Cai L. et al. Application of 3D-printing technology in the treatment of humeral intercondylar fractures. Orthop Traumatol Surg Res 2018; 104: 8388
- 10 Beredjiklian PK, Wang M, Lutsky K. et al. Three-Dimensional Printing in Orthopaedic Surgery: Technology and Clinical Applications. J Bone Joint Surg Am 2020; 102: 909-919
- 11 Ganguli A, Pagan-Diaz GJ, Grant L. et al. 3D printing for preoperative planning and surgical training: a review. Biomed Microdevices 2018; 20: 65
- 12 Chepelev L, Wake N, Ryan J. et al. Radiological Society of North America (RSNA) 3D printing Special Interest Group (SIG): guidelines for medical 3D printing and appropriateness for clinical scenarios. 3D Print Med 2018; 4: 11
- 13 Segaran N, Saini G, Mayer JL. et al. Application of 3D Printing in Preoperative Planning. J Clin Med 2021; 10: 917
- 14 Goo HW, Goo JM. Dual-Energy CT: New Horizon in Medical Imaging. Korean J Radiol 2017; 18: 555-569
- 15 Mitsouras D, Liacouras P, Imanzadeh A. et al. Medical 3D Printing for the Radiologist. Radiographics 2015; 35: 1965-1988
- 16 Gonzalez-Gutierrez J, Cano S, Schuschnigg S. et al. Additive Manufacturing of Metallic and Ceramic Components by the Material Extrusion of Highly-Filled Polymers: A Review and Future Perspectives. Materials (Basel) 2018; 11
- 17 Kim HN, Liu XN, Noh KC. Use of a real-size 3D-printed model as a preoperative and intraoperative tool for minimally invasive plating of comminuted midshaft clavicle fractures. J Orthop Surg Res 2015; 10: 91
- 18 Brouwers L, Teutelink A, van Tilborg FAJB. et al. Validation study of 3D-printed anatomical models using 2 PLA printers for preoperative planning in trauma surgery, a human cadaver study. Eur J Trauma Emerg Surg 2019; 45: 1013-1020
- 19 Upex P, Jouffroy P, Riouallon G. Application of 3D printing for treating fractures of both columns of the acetabulum: Benefit of pre-contouring plates on the mirrored healthy pelvis. Orthop Traumatol Surg Res 2017; 103: 331-334
- 20 Atesok K, Galos D, Jazrawi LM. et al. Preoperative Planning in Orthopaedic Surgery. Current Practice and Evolving Applications. Bull Hosp Jt Dis (2013) 2015; 73: 257-268
- 21 Wong KC. 3D-printed patient-specific applications in orthopedics. Orthop Res Rev 2016; 8: 57-66
- 22 Shen S, Wang P, Li X. et al. Pre-operative simulation using a three-dimensional printing model for surgical treatment of old and complex tibial plateau fractures. Sci Rep 2020; 10: 6044
- 23 Fang C, Cai H, Kuong E. et al. Surgical applications of three-dimensional printing in the pelvis and acetabulum: from models and tools to implants. Unfallchirurg 2019; 122: 278-285
- 24 Marinescu R, Popescu D, Laptoiu D. A Review on 3D-Printed Templates for Precontouring Fixation Plates in Orthopedic Surgery. J Clin Med 2020; 9: 2908
- 25 Xiong L, Li X, Li H. et al. The efficacy of 3D printing-assisted surgery for traumatic fracture: a meta-analysis. Postgrad Med J 2019; 95: 414-419
- 26 Xie L, Chen C, Zhang Y. et al. Three-dimensional printing assisted ORIF versus conventional ORIF for tibial plateau fractures: A systematic review and meta-analysis. Int J Surg 2018; 57: 35-44
- 27 AlAli AB, Griffin MF, Calonge WM. et al. Evaluating the Use of Cleft Lip and Palate 3D-Printed Models as a Teaching Aid. J Surg Educ 2018; 75: 200-208
- 28 Wu AM, Wang K, Wang JS. et al. The addition of 3D printed models to enhance the teaching and learning of bone spatial anatomy and fractures for undergraduate students: a randomized controlled study. Ann Transl Med 2018; 6: 403
- 29 Brouwers L, Pull Ter Gunne AF, de Jongh MA. et al. What is the value of 3D virtual reality in understanding acetabular fractures?. Eur J Orthop Surg Traumatol 2020; 30: 109-116
- 30 Omori S, Murase T, Oka K. et al. Postoperative accuracy analysis of three-dimensional corrective osteotomy for cubitus varus deformity with a custom-made surgical guide based on computer simulation. J Shoulder Elbow Surg 2015; 24: 242-249
- 31 Niikura T, Sugimoto M, Lee SY. et al. Tactile surgical navigation system for complex acetabular fracture surgery. Orthopedics 2014; 37: 237-242
- 32 Yang L, Grottkau B, He Z. et al. Three dimensional printing technology and materials for treatment of elbow fractures. Int Orthop 2017; 41: 2381-2387
- 33 Chen C, Cai L, Zheng W. et al. The efficacy of using 3D printing models in the treatment of fractures: a randomised clinical trial. BMC Musculoskelet Disord 2019; 20: 65
- 34 Murphy SV, De Coppi P, Atala A. Opportunities and challenges of translational 3D bioprinting. Nat Biomed Eng 2020; 4: 370-380