Subscribe to RSS
DOI: 10.1055/a-1658-8381
Anforderungen für den 3-D-Druck von Implantaten
Requirements for 3D Printing of Medical Implants
Zusammenfassung
3-D-Druck wird in der Unfallchirurgie und Orthopädie zunehmend für die Herstellung patientenspezifischer Implantate verwendet. Ziel dieses strukturierten Reviews ist es, aktuelle Merkmale und Fähigkeiten zu ermitteln und hieraus Anforderungen an das Implantatdesign und den -druck abzuleiten. Hierzu wurden 98 Veröffentlichungen der letzten 5 Jahre analysiert.
Neben Kunststoffen und Metallen können auch biologisches Material und Medikamentensuspensionen zum Druck verwendet werden. Der 3-D-Druck bietet den Vorteil, dass die Implantate individuell an die Anatomie und Pathologie des Patienten angepasst werden können, also auch bewusst Einfluss auf biomechanischen und -mimetischen Eigenschaften genommen werden kann. Beispielsweise kann die Oberfläche der Implantate gezielt so optimiert werden, dass eine Osteoinduktivität bewirkt wird. Angewandt wird das Verfahren zum Gelenk- und Knochenersatz sowie für Knorpel- und Weichteilrekonstruktionen.
Somit ergeben sich diverse Anforderungen an das Design und die Herstellung. Da es sich um ein sehr zeit- und kostenintensives Verfahren handelt, sollte eine klare Überlegenheit zu herkömmlichen Behandlungsmethoden bestehen. Aufgrund der Komplexität des Prozesses ist eine Qualitätssicherung unabdingbar, um die Sicherheit des Patienten zu gewährleisten.
Bei komplexen oder von der Norm abweichenden Fällen wird der 3-D-Druck sich zunehmend durchsetzen. Um Qualität zu gewährleisten und effiziente Prozesse zu etablieren, ist eine engere Verzahnung zwischen Behandlern und Herstellern unabdingbar.
Abstract
3D printing is increasingly used in trauma and orthopedic surgery for the fabrication of patient-specific implants. The aim of this structured review is to identify current features and capabilities, and to derive implant design and printing requirements from these. For this purpose, 98 publications from the last 5 years were analyzed.
In addition to polymers and metals, biological material and drug suspensions can be used for printing. The advantage of 3D printing is that implants can be individually adapted to the patient's anatomy and pathology, i.e. biomechanical and -mimetic properties can be deliberately influenced. For example, the surface of the implants can be specifically optimized to achieve osteoinductivity. The process is used for joint and bone replacement as well as for cartilage and soft tissue reconstruction.
This results in various design and manufacturing requirements. Since it is a very time-consuming and cost-intensive procedure, there should be a clear superiority to conventional treatment methods. Due to the complexity of the process, quality assurance is essential to ensure patient safety.
For complex cases or those that deviate from the norm, 3D printing will become increasingly popular. In order to ensure quality and establish efficient processes, closer interaction between treatment providers and manufacturers is essential.
Schlüsselwörter
3-D-Druck - patientenspezifische Implantate - Orthopädie - Unfallchirurgie - QualitätssicherungKey words
3D print - patient-specific implant - orthopedic surgery - trauma surgery - quality assurancePublication History
Article published online:
14 February 2022
© 2022. Thieme. All rights reserved.
Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany
-
Literatur
- 1 Weidert S, Andress S, Suero E. et al. 3D-Druck in der unfallchirurgischen Fort- und Weiterbildung. Unfallchirurg 2019; 122: 444-451
- 2 Li J, Cui X, Hooper GJ. et al. Rational design, bio-functionalization and biological performance of hybrid additive manufactured titanium implants for orthopaedic applications: A review. J Mech Behav Biomed Mater 2020; 105: 103671
- 3 van Hengel IAJ, Gelderman FSA, Athanasiadis S. et al. Functionality-packed additively manufactured porous titanium implants. Mater Today Bio 2020; 7: 100060
- 4 Jahanmard F, Dijkmans FM, Majed A. et al. Toward Antibacterial Coatings for Personalized Implants. ACS Biomater Sci Eng 2020; 6: 5486-5492
- 5 Cao Y, Yang S, Zhao D. et al. Three-dimensional printed multiphasic scaffolds with stratified cell-laden gelatin methacrylate hydrogels for biomimetic tendon-to-bone interface engineering. J Orthop Translat 2020; 23: 89-100
- 6 Yang Y, Wang M, Yang S. et al. Bioprinting of an osteocyte network for biomimetic mineralization. Biofabrication 2020; 12: 045013
- 7 Filardo G, Petretta M, Cavallo C. et al. Patient-specific meniscus prototype based on 3D bioprinting of human cell-laden scaffold. Bone Joint Res 2019; 8: 101-106
- 8 Vidal L, Kampleitner C, Krissian S. et al. Regeneration of segmental defects in metatarsus of sheep with vascularized and customized 3D-printed calcium phosphate scaffolds. Sci Rep 2020; 10: 7068
- 9 Li Y, Jahr H, Zhou J. et al. Additively manufactured biodegradable porous metals. Acta Biomater 2020; 115: 29-50
- 10 Yan L, Lim JL, Lee JW. et al. Finite element analysis of bone and implant stresses for customized 3D-printed orthopaedic implants in fracture fixation. Med Biol Eng Comput 2020; 58: 921-931
- 11 Iqbal T, Wang L, Li D. et al. A general multi-objective topology optimization methodology developed for customized design of pelvic prostheses. Med Eng Phys 2019; 69: 8-16
- 12 Kang J, Dong E, Li X. et al. Topological design and biomechanical evaluation for 3D printed multi-segment artificial vertebral implants. Mater Sci Eng C Mater Biol Appl 2021; 127: 112250
- 13 Kawai T, Shanjani Y, Fazeli S. et al. Customized, degradable, functionally graded scaffold for potential treatment of early-stage osteonecrosis of the femoral head. J Orthop Res 2017; 36: 1002-1011
- 14 Lu Y, Chen G, Long Z. et al. Novel 3D-printed prosthetic composite for reconstruction of massive bone defects in lower extremities after malignant tumor resection. J Bone Oncol 2019; 16: 100220
- 15 Woo S-H, Sung M-J, Park K-S. et al. Three-dimensional-printing Technology in Hip and Pelvic Surgery: Current Landscape. Hip Pelvis 2020; 32: 1-10
- 16 Zankovic S, Seidenstuecker M, Prall WC. et al. A Method for the Evaluation of Early Osseointegration of Implant Materials Ex Vivo: Human Bone Organ Model. Materials (Basel) 2021; 14: 3001
- 17 Han Y, Lian M, Wu Q. et al. Effect of Pore Size on Cell Behavior Using Melt Electrowritten Scaffolds. Front Bioeng Biotechnol 2021; 9: 629270
- 18 Ma L, Wang X, Zhao N. et al. Integrating 3D Printing and Biomimetic Mineralization for Personalized Enhanced Osteogenesis, Angiogenesis, and Osteointegration. ACS Appl Mater Interfaces 2018; 10: 42146-42154
- 19 Wei F, Li Z, Liu Z. et al. Upper cervical spine reconstruction using customized 3D-printed vertebral body in 9 patients with primary tumors involving C2. Ann Transl Medi 2020; 8: 332
- 20 Fujibayashi S, Takemoto M, Nakamura T. et al. Stand-Alone Anterior Cervical Discectomy and Fusion Using an Additive Manufactured Individualized Bioactive Porous Titanium Implant without Bone Graft: Results of a Prospective Clinical Trial. Asian Spine J 2021; 15: 373-380
- 21 Angelini A, Kotrych D, Trovarelli G. et al. Analysis of principles inspiring design of three-dimensional-printed custom-made prostheses in two referral centres. Int Orthop 2020; 44: 829-837
- 22 Tong J, Bowen CR, Persson J. et al. Mechanical properties of titanium-based Ti–6Al–4 V alloys manufactured by powder bed additive manufacture. Mat Sci Tech 2016; 33: 138-148
- 23 Vrancken B, Thijs L, Kruth J-P. et al. Heat treatment of Ti6Al4 V produced by Selective Laser Melting: Microstructure and mechanical properties. J Alloys Comp 2012; 541: 177-185
- 24 Wang C, Chen Y, Wang L. et al. Three-dimensional printing of patient-specific plates for the treatment of acetabular fractures involving quadrilateral plate disruption. BMC Musculoskelet Disord 2020; 21: 451
- 25 Tracey J, Arora D, Gross CE. et al. Custom 3D-Printed Total Talar Prostheses Restore Normal Joint Anatomy Throughout the Hindfoot. Foot Ankle Spec 2018; 12: 39-48
- 26 West TA, Rush SM. Total Talus Replacement: Case Series and Literature Review. J Foot Ankle Surg 2021; 60: 187-193
- 27 So E, Mandas VH, Hlad L. Large Osseous Defect Reconstruction Using a Custom Three-Dimensional Printed Titanium Truss Implant. J Foot Ankle Surg 2018; 57: 196-204
- 28 Grossi S, DʼArienzo A, Sacchetti F. et al. One-Step Reconstruction with Custom-made 3D-printed Scapular Prosthesis After Partial or Total Scapulectomy. Surg Technol Int 2020; 36: 341-346
- 29 Belzile EL, Angers M, Bédard M. Custom Unicompartmental Knee Arthroplasty. In: Rivière C, Vendittoli P-A, eds. Personalized Hip and Knee Joint Replacement Springer International Publishing; 2020: 221-231
- 30 Zheng P, Hu X, Lou Y. et al. Rabbit Model of Osteochondral Regeneration Using Three-Dimensional Printed Polycaprolactone-Hydroxyapatite Scaffolds Coated with Umbilical Cord Blood Mesenchymal Stem Cells and Chondrocytes. Med Sci Monitor 2019; 25: 7361-7369
- 31 Tappa K, Jammalamadaka U, Weisman J. 3D Printing Custom Bioactive and Absorbable Surgical Screws, Pins, and Bone Plates for Localized Drug Delivery. J Funct Biomater 2019; 10: 17
- 32 Lee J-H, Baik J-M, Yu Y-S. et al. Development of a heat labile antibiotic eluting 3D printed scaffold for the treatment of osteomyelitis. Sci Rep 2020; 10: 7554
- 33 Benmassaoud MM, Kohama C, Kim TWB. et al. Efficacy of eluted antibiotics through 3D printed femoral implants. Biomed Microdevices 2019; 21
- 34 Chepelev L, Wake N, Ryan J. et al. Radiological Society of North America (RSNA) 3D printing Special Interest Group (SIG): guidelines for medical 3D printing and appropriateness for clinical scenarios. 3D Print Med 2018; 4: 11
- 35 Willemsen K, Nizak R, Noordmans HJ. et al. Challenges in the design and regulatory approval of 3D-printed surgical implants: a two-case series. Lancet Digit Health 2019; 1: e163-e171
- 36 [Anonymous] Consolidated text: Regulation (EU) 2017/745 of the European Parliament and of the Council of 5 April 2017 on medical devices, amending Directive 2001/83/EC, Regulation (EC) No 178/2002 and Regulation (EC) No 1223/2009 and repealing Council Directives 90/385/EEC and 93/42/EEC (Text with EEA relevance) Text with EEA relevance. Access initial legal act (In force). Im Internet (Stand: 28.09.2021): http://data.europa.eu/eli/reg/2017/745/2020-04-24