Planta Med 2021; 87(14): 1152-1166
DOI: 10.1055/a-1647-2930
Natural Product Chemistry and Analytical Studies
Original Papers

HPTLC Fingerprint Authentication of Selected Sideritis spp. Using a Pharmacognostic Approach[ # ]

Lisa-Anna-Maria Pihan
1   Zurich University of Applied Sciences, Institute of Chemistry and Biotechnology, Natural Products and Phytopharmacy Research Group, Wädenswil, Switzerland
2   Technical University Dresden, Faculty of Biology, Dresden, Germany
,
Samuel Peter
1   Zurich University of Applied Sciences, Institute of Chemistry and Biotechnology, Natural Products and Phytopharmacy Research Group, Wädenswil, Switzerland
,
Günter Vollmer
2   Technical University Dresden, Faculty of Biology, Dresden, Germany
,
Beat Meier
1   Zurich University of Applied Sciences, Institute of Chemistry and Biotechnology, Natural Products and Phytopharmacy Research Group, Wädenswil, Switzerland
,
Evelyn Wolfram
1   Zurich University of Applied Sciences, Institute of Chemistry and Biotechnology, Natural Products and Phytopharmacy Research Group, Wädenswil, Switzerland
› Author Affiliations

Abstract

The genus Sideritis (Lamiaceae) comprises around 150 species, of which many are popular herbal remedies in Mediterranean folk medicine. Already mentioned by Dioscorides and Theophrastus, the “ironwort” or “Greek mountain tea” has been receiving increased attention in recent years. A European Union herbal monograph and assessment report (HMPC) has been issued, covering the species Sideritis scardica, S. clandestina, S. raeseri, and S. syriaca. This study presents results of a first pharmacognostic examination of the botanical and phytochemical differences among and between these emerging commercial species, and other, less studied species. An HPTLC method is proposed for normal phase separation of the species; this means applying two mobile phases on silica plates and subsequent derivatization with natural product reagent (NP/PEG) for visualization of phenolic compounds and anisaldehyde for a broader detection. With the help of selected reference compounds, a system suitability test was established for proper chromatographic separation. The method was applied to specimens from botanical gardens and commercial raw material in order to test its suitability for differentiation and authentication. The HPTLC analysis also includes, for the first time, S. hyssopifolia and other less used Sideritis species. The results might enable the development of a validated phytochemical fingerprint authentication procedure for quality assurance of Sideritis herba.

# Dedicated to Professor Dr. Otto Sticher on the occasion of his 85th birthday.


Supporting Information



Publication History

Received: 12 April 2021

Accepted after revision: 24 August 2021

Article published online:
15 October 2021

© 2021. Thieme. All rights reserved.

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

  • 1 Todorova M, Trendafilova A. Sideritis scardica Griseb., an endemic species of Balkan peninsula: traditional uses, cultivation, chemical composition, biological activity. J Ethnopharmacol 2014; 152: 256-265
  • 2 Barber JC, Francisco-Ortega J, Santos-Guerra A, Turner KG, Jansen RK. Origin of Macronesian Sideritis L. (Lamioideae: Lamiaceae) inferred from nuclear and chloroplast sequence datasets. Mol Phylogenet Evol 2002; 23: 293-306
  • 3 Stanoeva JP, Stefova M, Stefkov G, Kulevanova S, Alipieva K, Bankova V, Evstatieva LN. Chemotaxonomic contribution to the Sideritis species dilemma on the Balkans. Biochem Syst Ecol 2015; 61: 477-487
  • 4 Committee on Herbal Medicinal Products. European Union Herbal Monograph on Sideritis scardica Griseb; Sideritis clandestina (Bory & Chaub.) Hayek; Sideritis raeseri Boiss. & Heldr.; Sideritis syriaca L. Herba. EMA/HMPC/39453/2015. London: European Medicines Agency; 2015
  • 5 Heywood V. Flora Europaea. Vol. 3, Diapensiaceae to Myoporaceae. Cambridge: Cambridge University Press; 1972
  • 6 Baden C. Mountain Flora of Greece, Vol. 2. Edinburgh: Edinburgh University Press; 1991
  • 7 Lauber K, Wagner G, Gygax A. Flora Helvetica, 6th Edition. Bern: Haupt; 2018
  • 8 Coto E, Fernandez N, Garcia JJ, Diez MJ, Sahagun AM, Sierra M. Assessment of the antioxidant/hypolipidemic relationship of Sideritis hyssopifolia in an experimental animal model. Molecules 2019; 24: 2049-2058
  • 9 González-Burgos E, Carretero M, Gómez-Serranillos M. Sideritis spp.: Uses, chemical composition and pharmacological activities–a review. J Ethnopharmacol 2011; 135: 209-225
  • 10 Yaneva I, Balabanski V. History of the uses of Pirin mountain tea (Sideritis scardica Griseb) in Bulgaria. Bulgaria. Bulg J Public Health 2013; 5: 48-57
  • 11 De-Santayana MP, Tardío J, Morales R. The gathering and consumption of wild edible plants in the Campoo (Cantabria, Spain). Int J Food Sci Nutr 2005; 56: 529-542
  • 12 De Santayana MP, Blanco E, Morales R. Plants known as té in Spain: An ethno-pharmaco-botanical review. J Ethnopharmacol 2005; 98: 1-19
  • 13 Ivancheva S, Stantcheva B. Ethnobotanical inventory of medicinal plants in Bulgaria. J Ethnopharmacol 2000; 69: 165-172
  • 14 Todorova MN, Christov RC, Evstatieva LN. Essential oil composition of three Sideritis species from Bulgaria. J Essent Oil Res 2000; 12: 418-420
  • 15 Aneva I, Zhelev P, Kozuharova E, Danova K, Nabavi SF, Behzad S. Genus Sideritis, section Empedoclea in southeastern Europe and Turkey – studies in ethnopharmacology and recent progress of biological activities. DARU J Pharm Sci 2019; 27: 407-421
  • 16 Gil MI, Ferreres F, Marrero A, Tomás-Lorente F, Tomas-Barberan FA. Distribution of flavonoid aglycones and glycosides in Sideritis species from the Canary Islands and Madeira. Phytochemistry 1993; 34: 227-232
  • 17 Villar A, Gasco MA, Alcaraz MJ, Manez S, Cortes D. Hypolaetin-8-O-glucoside, an anti-inflammatory flavonoid from Sideritis mugronensis . Planta Med 1985; 302: 70
  • 18 Fraga BM. Phytochemistry and chemotaxonomy of Sideritis species from the Mediterranean region. Phytochemistry 2012; 76: 7-24
  • 19 Menković N, Ristić M, Samardžić Z, Savin K, Kovaćević N. The essential oil of Sideritis scardica . Planta Med 1991; 57: A137-A138
  • 20 Mitropoulou G, Sidira M, Skitsa M, Tsochantaridis I, Pappa A, Dimtsoudis C, Kourkoutas Y. Assessment of the antimicrobial, antioxidant, and antiproliferative potential of Sideritis raeseri subps. raeseri essential oil. Foods 2020; 9: 860
  • 21 Kloukina C, Tomou EM, Krigas N, Sarropoulou V, Madesis P, Maloupa E, Skaltsa H. Non-polar secondary metabolites and essential oil of ex situ propagated and cultivated Sideritis syriaca L. subsp. syriaca (Lamiaceae) with consolidated identity (DNA Barcoding): towards a potential new industrial crop. Ind Crop Prod 2020; 158: 112957
  • 22 Knörle R. Extracts of Sideritis scardica as triple monoamine reuptake inhibitors. J Neural Transm 2012; 119: 1477-1482
  • 23 Heiner F, Feistel B, Wink M. Sideritis scardica extracts inhibit aggregation and toxicity of amyloid-β in Caenorhabditis elegans used as a model for Alzheimerʼs disease. Peer J 2018; 6: e4683
  • 24 Hofrichter J, Krohn M, Schumacher T, Lange C, Feistel B, Walbroel B, Pahnke J. Sideritis spp. extracts enhance memory and learning in Alzheimerʼs β-amyloidosis mouse models and aged C57Bl/6 Mice. J Alzheimers Dis 2016; 53: 967-980
  • 25 Koleva I, Linssen J, van Beek T, Evstatieva L, Kortenska V, Handjieva N. Antioxidant activity screening of extracts from Sideritis species (Labiatae) grown in Bulgaria. J Sci Food Agr 2003; 83 (08) 809-819
  • 26 Romanucci V, Di Fabio G, DʼAlonzo D, Guaragna A, Scapagnini G, Zarrelli A. Traditional uses, chemical composition, and biological activities of Sideritis raeseri Boiss. & Heldr. J Sci Food Agr 2017; 97: 373-383
  • 27 Kara MS, Sahin H, Turumtay H, Dinc S, Gumuscu A. The phenolic composition and antioxidant activity of tea with different parts of Sideritis condensate at different steeping conditions. J Food Nutr Res 2014; 2: 258-262
  • 28 Janeska B, Stefova M, Alipieva K. Assay of flavonoid aglycones from the species of genus Sideritis (Lamiaceae) from Macedonia with HPLC-UV DAD. Acta Pharm 2007; 57: 371-377
  • 29 Geahlen RL, Koonchanok NM, McLaughlin JL, Pratt DE. Inhibition of protein-tyrosine kinase activity by flavonoids and related compounds. J Nat Prod 1989; 52: 982-986
  • 30 Aimond A, Calabro K, Audoin C, Olivier E, Dutot M, Buron P, Rat P, Laprévote O, Prado S, Roulland E, Thomas OP, Genta-Jouve G. Cytotoxic and anti-Inflammatory effects of ent-kaurane derivatives isolated from the Alpine plant Sideritis hyssopifolia . Molecules 2020; 25: 589
  • 31 Adzet T, Cañigueral S, Monasterio I, Vila R, Ibáñez C. The essential oil and polyphenols of Sideritis hyssopifolia var pyrenaica . J Essent Oil Res 1990; 2: 151-153
  • 32 Rodríguez-Lyon ML, Díaz-Lanza AM, Bernabé M, Villaescusa-Castillo L. Flavone glycosides containing acetylated sugars from Sideritis hyssopifolia . Magn Reson Chem 2000; 38: 684-687
  • 33 Strid A. (Ed.). Mountain Flora of Greece, Vol. 1. Cambridge: Cambridge University Press; 1986
  • 34 European Pharmacopeia, 10th Edition. Strasbourg: EDQM; 2020
  • 35 Tsibranska L, Tylkowski B, Kochanov R, Alipieva K. Extraction of biologically active compounds from Sideritis ssp L. Food Bioprod Process 2011; 89: 273-280
  • 36 Petreska J, Stefova M, Ferreres F, Moreno DA, Tomás-Barberán FA, Stefkov G. Gil-Izquierdo A. Potential bioactive phenolics of Macedonian Sideritis species used for medicinal “Mountain Tea”. Food Chem 2011; 125: 13-20
  • 37 Danesi F, Saha S, Kroon PA, Glibetić M, Konić-Ristić A, DʼAntuono LF, Bordoni A. Bioactive-rich Sideritis scardica tea (mountain tea) is as potent as Camellia sinensis tea at inducing cellular antioxidant defences and preventing oxidative stress. J Sci Food Agr 2013; 93: 3558-3564
  • 38 Venditti A, Bianco A, Maggi F, Nicoletti M. Polar constituents composition of endemic Sideritis italica (MILL.) Greuter et Burter from central Italy. Nat Prod Res 2018; 27: 1408-1412
  • 39 Kroslakova I, Pedrussio S, Wolfram E. Direct coupling of HPTLC with MALDI-TOF MS for qualitative detection of flavonoids on phytochemical fingerprints. Phytochem Anal 2016; 27: 222-228
  • 40 Giuliani C, Maleci L, Papa F, Cristalli G, Sagratini G, Vittori S, Maggi F. Glandular trichomes and essential oil composition of endemic Sideritis italica (Mill.) Greuter et Burdet from central Italy. Chem Biodivers 2011; 8: 2179-2194
  • 41 Tadic VM, Jeremic I, Dobric S, Isakovic A, Markovic I, Trajkovic V, Arsic I. Anti-inflammatory, gastroprotective, and cytotoxic effects of Sideritis scardica extracts. Planta Med 2012; 78: 415-427
  • 42 Proestos CZ, Zoumpoulakis P, Sinanoglou VJ. Determination of plant bioactive compounds. Antioxidant capacity and antimicrobial screening. Focus Mod Food Ind 2013; 2: 26-35
  • 43 Rivera D, Obon C, Alcaraz F, Llorach R. Systematics of the high mountain taxa of the genus Sideritis L. section Sideritis, subsection Fruticulosae Obón & D. Rivera (Lamiaceae). Bot J Linn Soc 1999; 129: 249-265
  • 44 Committee on Herbal Medicinal Products. Assessment Report on Sideritis scardica Griseb.; Sideritis clandestina (Bory & Chaub.) Hayek; Sideritis raeseri Boiss. & Heldr.; Sideritis syriaca L., Herba. EMA/HMPC/39455/2015. London: European Medicines Agency; 2015
  • 45 Reich E, Schibli A. High-Performance Thin-Layer Chromatography for the Analysis of Medicinal Plants. Stuttgart: Thieme; 2007
  • 46 Janicsak G, Mathe I, Miklossy-Vari V, Blunden G. Comparative studies of the rosmarinic and caffeic acid contents of Lamiaceae species. Biochem Systemat Ecol 1999; 27: 733-738