Klin Monbl Augenheilkd 2022; 239(05): 709-716
DOI: 10.1055/a-1473-5897
Klinische Studie

Vitamin B12 and Folate as Risk Factors for Retinal Vein Occlusion: A Meta-Analysis

Vitamin B12 und Folsäure als Risikofaktoren für den Verschluss der Netzhautvene: eine Metaanalyse
Dimitrios Kazantzis
1   2nd Department of Ophthalmology, National and Kapodistrian University of Athens, Athens, Greece
,
Panagiotis Theodossiadis
1   2nd Department of Ophthalmology, National and Kapodistrian University of Athens, Athens, Greece
,
Christos Kroupis
2   Department of Clinical Biochemistry, National and Kapodistrian University of Athens, Attikon University Hospital, Athens, Greece
,
George Theodossiadis
1   2nd Department of Ophthalmology, National and Kapodistrian University of Athens, Athens, Greece
,
Irini Chatziralli
1   2nd Department of Ophthalmology, National and Kapodistrian University of Athens, Athens, Greece
› Author Affiliations

Abstract

Purpose To evaluate the association between serum vitamin B12/folate and retinal vein occlusion (RVO).

Methods A comprehensive search of the PubMed database was performed, which identified 271 abstracts to be screened. Ten studies met our inclusion criteria and a meta-analysis of these comparative case-control studies was performed on the mean ± standard deviation serum vitamin B12 and folate levels, without language restrictions. Nine studies with 720 patients with RVO and 613 controls were included in the meta-analysis for vitamin B12, and 10 studies with 784 patients with RVO and 677 controls in the meta-analysis for folate.

Results There was no statistically significant difference between patients with RVO and controls in serum vitamin B12 levels (mean difference: − 40.25 pg/mL, p = 0.28), either central RVO (mean difference: − 18.24 pg/mL, p = 0.71) or branch RVO (mean difference: − 23.56 pg/mL, p = 0.48). On the contrary, the plasma folate level was significantly lower in RVO patients than in controls (mean difference: − 1.34 ng/mL, p = 0.001), as well as in patients with CRVO compared to controls (mean difference: − 1.48 ng/mL, p = 0.006), but not in BRVO patients (mean difference: − 0.72 ng/mL, p = 0.11).

Conclusions RVO is associated with low serum folate levels, but not with serum vitamin B12 levels.

Zusammenfassung

Zweck Bewertung des Zusammenhangs zwischen Serumvitamin B12/Folsäure und Netzhautvenenverschluss (NVV).

Methoden Eine umfassende Suche in der PubMed-Datenbank wurde durchgeführt und ergab 271 zu überprüfende Abstracts. Zehn Studien erfüllten unsere Einschlusskriterien und eine Metaanalyse dieser vergleichenden Fallkontrollstudien mit Angaben zum Mittelwert ± Standardabweichung der Vitamin-B12- und Folatspiegel im Serum wurde ohne sprachliche Einschränkungen durchgeführt. Insbesondere wurden 9 Studien mit 720 Patienten mit NVV und 613 Kontrollen in die Metaanalyse für Vitamin B12 und 10 Studien mit 784 Patienten mit NVV und 677 Kontrollen in die Metaanalyse für Folsäure einbezogen.

Ergebnisse Es gab keinen statistisch signifikanten Unterschied zwischen Patienten mit NVV und Kontrollen hinsichtlich der Vitamin-B12-Spiegel im Serum (mittlerer Unterschied: − 40,25 pg/ml, p = 0,28), weder zentraler NVV (mittlerer Unterschied: − 18,24 pg/ml, p = 0,71) oder Verzweigungs-NVV (mittlere Differenz: − 23,56 pg/ml, p = 0,48). Im Gegensatz dazu war der Plasmafolatspiegel bei NVV-Patienten signifikant niedriger als bei Kontrollen (mittlerer Unterschied: − 1,34 ng/ml, p = 0,001) sowie bei Patienten mit zentralem NVV im Vergleich zu Kontrollen (mittlerer Unterschied: − 1,48 ng/ml, p = 0,006), jedoch nicht bei Verzweigungs-NVV (mittlere Differenz: − 0,72 ng/ml, p = 0,11).

Schlussfolgerungen NVV ist mit niedrigen Serumfolatspiegeln assoziiert, nicht jedoch mit Serumvitamin B12.

Supporting Information



Publication History

Received: 12 December 2020

Accepted: 26 February 2021

Article published online:
17 May 2021

© 2021. Thieme. All rights reserved.

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

  • 1 Ip M, Hendrick A. Retinal Vein Occlusion Review. Asia Pac J Ophthalmol (Phila) 2018; 7: 40-45
  • 2 Jonas JB, Monés J, Glacet-Bernard A. et al. Retinal Vein Occlusions. Dev Ophthalmol 2017; 58: 139-167
  • 3 Rogers S, McIntosh RL, Cheung N. et al. The prevalence of retinal vein occlusion: pooled data from population studies from the United States, Europe, Asia, and Australia. Ophthalmology 2010; 117: 313-319
  • 4 Song P, Xu Y, Zha M. et al. Global epidemiology of retinal vein occlusion: a systematic review and meta-analysis of prevalence, incidence, and risk factors. J Glob Health 2019; 9: 010427
  • 5 Cugati S, Wang JJ, Rochtchina E. et al. Ten-year incidence of retinal vein occlusion in an older population: the Blue Mountains Eye Study. Arch Ophthalmol 2006; 124: 726-732
  • 6 Jaulim A, Ahmed B, Khanam T. et al. Branch retinal vein occlusion: epidemiology, pathogenesis, risk factors, clinical features, diagnosis, and complications. An update of the literature. Retina 2013; 33: 901-910
  • 7 Kolar P. Risk factors for central and branch retinal vein occlusion: a meta-analysis of published clinical data. J Ophthalmol 2014; 2014: 724780
  • 8 Deobhakta A, Chang LK. Inflammation in retinal vein occlusion. Int J Inflam 2013; 2013: 438412
  • 9 Cahill M, Karabatzaki M, Meleady R. et al. Raised plasma homocysteine as a risk factor for retinal vascular occlusive disease. Br J Ophthalmol 2000; 84: 154-157
  • 10 Martin SC, Rauz S, Marr JE. et al. Plasma total homocysteine and retinal vascular disease. Eye (Lond) 2000; 14: 590-593
  • 11 Brown BA, Marx JL, Ward TP. et al. Homocysteine: a risk factor for retinal venous occlusive disease. Ophthalmology 2002; 109: 287-290
  • 12 Weger M, Stanger O, Deutschmann H. et al. Hyperhomocyst(e)inemia, but not methylenetetrahydrofolate reductase C677T mutation, as a risk factor in branch retinal vein occlusion. Ophthalmology 2002; 109: 1105-1109
  • 13 Larsson J, Hultberg B, Hillarp A. Hyperhomocysteinemia and the MTHFR C677T mutation in central retinal vein occlusion. Acta Ophthalmol Scand 2000; 78: 340-343
  • 14 Selhub J, Jacques PF, Wilson PWF. et al. Vitamin status and intake as primary determinants of homocysteinaemia in an elderly population. JAMA 1993; 270: 2693-2698
  • 15 Cattaneo M, Lombardi R, Lecchi A. et al. Low plasma levels of vitamin B6 are independently associated with a heightened risk of deep-vein thrombosis. Circulation 2001; 104: 2442-2446
  • 16 Wells GA, Shea B, OʼConnell D. et al. The Newcastle-Ottawa Scale (NOS) for assessing the quality of nonrandomised studies in meta-analyses. Accessed February 12, 2021 at: http://www.ohri.ca/programs/clinical_epidemiology/oxford.asp
  • 17 Liberati A, Altman DG, Tetzlaff J. et al. The PRISMA statement for reporting systematic reviews and meta-analyses of studies that evaluate health care interventions: explanation and elaboration. J Clin Epidemiol 2009; 62: e1-e34
  • 18 Weger M, Stanger O, Deutschmann H. et al. Hyperhomocyst(e)inemia and MTHFR C677T genotypes in patients with central retinal vein occlusion. Graefes Arch Clin Exp Ophthalmol 2002; 240: 286-290
  • 19 Ferrazzi P, Di Micco P, Quaglia I. et al. Homocysteine, MTHFR C677T gene polymorphism, folic acid and vitamin B 12 in patients with retinal vein occlusion. Thromb J 2005; 3: 13
  • 20 Gao W, Wang YS, Zhang P. et al. Hyperhomocysteinemia and low plasma folate as risk factors for central retinal vein occlusion: a case-control study in a Chinese population. Graefes Arch Clin Exp Ophthalmol 2006; 244: 1246-1249
  • 21 Lattanzio R, Sampietro F, Ramoni A. et al. Moderate hyperhomocysteinemia and early-onset central retinal vein occlusion. Retina 2006; 26: 65-70
  • 22 Narayanasamy A, Subramaniam B, Karunakaran C. et al. Hyperhomocysteinemia and low methionine stress are risk factors for central retinal venous occlusion in an Indian population. Invest Ophthalmol Vis Sci 2007; 48: 1441-1446
  • 23 Dong N, Wang B, Chu L. et al. Plasma homocysteine concentrations in the acute phase after central retinal vein occlusion in a Chinese population. Curr Eye Res 2013; 38: 1153-1158
  • 24 Minniti G, Calevo MG, Giannattasio A. et al. Plasma homocysteine in patients with retinal vein occlusion. Eur J Ophthalmol 2014; 24: 735-743
  • 25 Lahiri KD, Mukherjee S, Ghosh S. et al. Hyperhomocysteinemia, a biochemical tool for differentiating ischemic and nonischemic central retinal vein occlusion during the early acute phase. Korean J Ophthalmol 2015; 29: 86-91
  • 26 Yildirim C, Yaylali V, Tatlipinar S. et al. Hyperhomocysteinemia: a risk factor for retinal vein occlusion. Ophthalmologica 2004; 218: 102-106
  • 27 McGimpsey SJ, Woodside JV, Bamford L. et al. Retinal vein occlusion, homocysteine, and methylene tetrahydrofolate reductase genotype. Invest Ophthalmol Vis Sci 2005; 46: 4712-4716
  • 28 Sofi F, Marcucci R, Bolli P. et al. Low vitamin B6 and folic acid levels are associated with retinal vein occlusion independently of homocysteine levels. Atherosclerosis 2008; 198: 223-227
  • 29 Selhub J, Jacques PF, Wilson PWF. et al. Vitamin status and intake as primary determinants of homocysteinaemia in an elderly population. JAMA 1993; 270: 2693-2698
  • 30 Finkelstein JD. Methionine metabolism in mammals. J Nutr Biochem 1990; 1: 228-237
  • 31 Finkelstein JD, Martin JJ. Homocysteine. Int J Biochem Cell Biol 2000; 32: 385-389
  • 32 DʼAngelo A, Selhub J. Homocysteine and thrombotic disease. Blood 1997; 90: 1-11
  • 33 McCully KS. Homocysteine theory of arteriosclerosis: development and current status. Atherosclerosis Rev 1983; 11: 157-246
  • 34 Harker LA, Slichter SJ, Scott CR. et al. Homocystinemia. Vascular injury and arterial thrombosis. N Engl J Med 1974; 291: 537-543
  • 35 Cahill MT, Stinnett SS, Fekrat S. Meta-analysis of plasma homocysteine, serum folate, serum vitamin B(12), and thermolabile MTHFR genotype as risk factors for retinal vascular occlusive disease. Am J Ophthalmol 2003; 136: 1136-1150
  • 36 Hofmann MA, Lalla E, Lu Y. et al. Hyperhomocysteinemia enhances vascular inflammation and accelerates atherosclerosis in a murine model. J Clin Invest 2001; 107: 675-683
  • 37 Lindgren A, Brattstrom L, Norrving B. et al. Plasma homocysteine in the acute and convalescent phases after stroke. Stroke 1995; 26: 795-800
  • 38 Egerton W, Silberberg J, Crooks R. et al. Serial measures of plasma homocyst(e)ine after acute myocardial infarction. Am J Cardiol 1996; 77: 759-761
  • 39 Jenkins DJA, Spence JD, Giovannucci EL. et al. Supplemental Vitamins and Minerals for Cardiovascular Disease Prevention and Treatment: JACC Focus Seminar. J Am Coll Cardiol 2021; 77: 423-436