Der Nuklearmediziner 2021; 44(02): 113-119
DOI: 10.1055/a-1380-7764
Aktuelle Trends aus den Radiopharmazeutischen Wissenschaften

Perspektiven und Methoden der Experimentellen Nuklearmedizin

Perspectives and Methods in Experimental Nuclear Medicine
Theresa Balber
1   Ludwig Boltzmann Institute Applied Diagnostics, Wien, Österreich
2   Department of Biomedical Imaging and Image-guided Therapy, Division of Nuclear Medicine, Medical University of Vienna, Wien, Österreich
,
Markus Mitterhauser
1   Ludwig Boltzmann Institute Applied Diagnostics, Wien, Österreich
2   Department of Biomedical Imaging and Image-guided Therapy, Division of Nuclear Medicine, Medical University of Vienna, Wien, Österreich
› Author Affiliations

Zusammenfassung

Die zentralen Aufgaben der experimentellen Nuklearmedizin liegen in der Entwicklung neuer Bildgebungsstrategien und Radioligandentherapien, in dem Erwerb eines tiefen molekularen Verständnisses für das Verhalten etablierter Radiopharmaka und der Entwicklung entsprechender Methodik für die Charakterisierung eben dieser. Die folgende Arbeit bietet einen Überblick über wichtige Parameter und Methoden der experimentellen Nuklearmedizin, die für die Realisierung einer erfolgreichen Bildgebungsstrategie und Radioligandentherapie essentiell sind.

Abstract

The central tasks of experimental nuclear medicine are the development of new imaging strategies and radioligand therapies, the acquisition of a deep molecular understanding of the behavior of established radiopharmaceuticals and the development of appropriate methodology for the characterization. The review provides an overview of key parameters and methods of experimental nuclear medicine that are essential for the realization of a successful imaging strategy and radioligand therapy.



Publication History

Article published online:
10 June 2021

© 2021. Thieme. All rights reserved.

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • Literatur

  • 1 Wadsak W, Mitterhauser M. Basics and principles of radiopharmaceuticals for PET/CT. European journal of radiology 2010; 73: 461-469
  • 2 Pichler V, Berroteran-Infante N, Philippe C. et al. An Overview of PET Radiochemistry, Part 1: The Covalent Labels (18)F, (11)C, and (13)N. J Nucl Med 2018; 59: 1350-1354
  • 3 Brandt M, Cardinale J, Aulsebrook ML. et al. An Overview of PET Radiochemistry, Part 2: Radiometals. J Nucl Med 2018; 59: 1500-1506
  • 4 AGENCY IAE. Quality Control in the Production of Radiopharmaceuticals. Vienna: INTERNATIONAL ATOMIC ENERGY AGENCY; 2018
  • 5 Balber T. Predictive value and limitations of preclinical methods in PET-tracer development. Dissertation. Wien: Universität Wien Fakultät für Lebenswissenschaften; 2019
  • 6 Owen DR, Yeo AJ, Gunn RN. et al. An 18-kDa translocator protein (TSPO) polymorphism explains differences in binding affinity of the PET radioligand PBR28. Journal of cerebral blood flow and metabolism 2012; 32: 1-5
  • 7 Mitterhauser M, Wadsak W. Imaging biomarkers or biomarker imaging?. Pharmaceuticals 2014; 7: 765-778
  • 8 Ludwig JA, Weinstein JN. Biomarkers in Cancer Staging, Prognosis and Treatment Selection. Nat Rev Cancer 2005; 5: 845-856
  • 9 Rosenbaum DM, Rasmussen SG, Kobilka BK. The structure and function of G-protein-coupled receptors. Nature 2009; 459: 356-363
  • 10 Vogel C, Marcotte EM. Insights into the regulation of protein abundance from proteomic and transcriptomic analyses. Nature Reviews Genetics 2012; 13: 227
  • 11 Koussounadis A, Langdon SP, Um IH. et al. Relationship between differentially expressed mRNA and mRNA-protein correlations in a xenograft model system. Scientific reports 2015; 5: 10775
  • 12 Nordberg M, Duffus J, Templeton DM. Glossary of terms used in toxicokinetics (IUPAC Recommendations 2003). Pure and Applied Chemistry 2004;
  • 13 Pike VW. PET radiotracers: crossing the blood–brain barrier and surviving metabolism. Trends in Pharmacological Sciences 2009; 30: 431-440
  • 14 Ettlinger DE, Wadsak W, Mien LK. et al. [18F]FETO: metabolic considerations. European journal of nuclear medicine and molecular imaging 2006; 33: 928-931
  • 15 Haeusler D, Nics L, Mien LK. et al. [18F]FE@SUPPY and [18F]FE@SUPPY:2--metabolic considerations. Nucl Med Biol 2010; 37: 421-426
  • 16 Rami-Mark C, Eberherr N, Berroteran-Infante N. et al. [(18)F]FMeNER-D2: A systematic in vitro analysis of radio-metabolism. Nucl Med Biol 2016; 43: 490-495
  • 17 Kleiber M. Body size and metabolism. Hilgardia 1932; 6: 315-353
  • 18 Ametamey SM, Honer M, Schubiger PA. Molecular Imaging with PET. Chem Rev 2008; 108: 1501-1516
  • 19 Maeda H, Wu J, Sawa T. et al. Tumor vascular permeability and the EPR effect in macromolecular therapeutics: a review. Journal of Controlled Release 2000; 65: 271-284
  • 20 Heneweer C, Holland JP, Divilov V. et al. Magnitude of enhanced permeability and retention effect in tumors with different phenotypes: 89Zr-albumin as a model system. J Nucl Med 2011; 52: 625-633
  • 21 Vraka C, Mijailovic S, Frohlich V. et al. Expanding LogP: Present possibilities. Nucl Med Biol 2018; 58: 20-32
  • 22 Valko K, Nunhuck S, Bevan C. et al. Fast gradient HPLC method to determine compounds binding to human serum albumin. Relationships with octanol/water and immobilized artificial membrane lipophilicity. J Pharm Sci 2003; 92: 2236-2248
  • 23 Tavares AA, Lewsey J, Dewar D. et al. Radiotracer properties determined by high performance liquid chromatography: a potential tool for brain radiotracer discovery. Nucl Med Biol 2012; 39: 127-135
  • 24 Giaginis C, Tsantili-Kakoulidou A. Alternative measures of lipophilicity: from octanol-water partitioning to IAM retention. J Pharm Sci 2008; 97: 2984-3004
  • 25 Miller PW, Long NJ, Vilar R. et al. Synthesis of 11C, 18F, 15O, and 13N Radiolabels for Positron Emission Tomography. Angew Chem Int Ed 2008; 47: 8998-9033
  • 26 Vraka C, Nics L, Wagner K-H. et al. LogP, a yesterdayʼs value?. Nucl Med Biol 2017; 50: 1-10
  • 27 Donovan SF, Pescatore MC. Method for measuring the logarithm of the octanol–water partition coefficient by using short octadecyl–poly(vinyl alcohol) high-performance liquid chromatography columns. Journal of Chromatography A 2002; 952: 47-61
  • 28 Serdons K, Verbruggen A, Bormans GM. Developing new molecular imaging probes for PET. Methods 2009; 48: 104-111
  • 29 Philippe CZM, Scherer T, Fürnsinn C. et al. MCHR1: a potential indicator for BAT activity. Nuklearmedizin 2016; 55: A78
  • 30 Kathawala RJ, Gupta P, Ashby CR. et al. The modulation of ABC transporter-mediated multidrug resistance in cancer: A review of the past decade. Drug Resistance Updates 2015; 18: 1-17
  • 31 Philippe C, Zeilinger M, Dumanic M. et al. SNAPshots of the MCHR1: a Comparison Between the PET-Tracers [(18)F]FE@SNAP and [(11)C]SNAP-7941. Mol Imaging Biol 2019; 21: 257-268
  • 32 Cheng Y, Prusoff WH. Relationship between the inhibition constant (K1) and the concentration of inhibitor which causes 50 per cent inhibition (I50) of an enzymatic reaction. Biochem Pharmacol 1973; 22: 3099-3108
  • 33 Bigott-Hennkens HM, Dannoon S, Lewis MR. et al. In vitro receptor binding assays: general methods and considerations. Quart J Nucl Med Mol Imaging 2008; 52: 245-253
  • 34 Lancelot S, Zimmer L. Small-animal positron emission tomography as a tool for neuropharmacology. Trends Pharmacol Sci 2010; 31: 411-417
  • 35 Qume M. Overview of ligand-receptor binding techniques. In: Receptor Binding Techniques. Springer; 1999: 3-23
  • 36 Maguire JJ, Kuc RE, Davenport AP. Radioligand binding assays and their analysis. Methods in molecular biology (Clifton, NJ) 2012; 897: 31-77
  • 37 Zeilinger M, Pichler F, Nics L. et al. New approaches for the reliable in vitro assessment of binding affinity based on high-resolution real-time data acquisition of radioligand-receptor binding kinetics. EJNMMI research 2017; 7: 22
  • 38 Hicks RJ, Dorow D, Roselt P. PET tracer development—a tale of mice and men. Cancer Imaging 2006; 6: S102-S106
  • 39 Chu X, Bleasby K, Evers R. Species differences in drug transporters and implications for translating preclinical findings to humans. Expert opinion on drug metabolism & toxicology 2013; 9: 237-252
  • 40 Shalgunov V, Xiong M, L’Estrade ET. et al. Blocking of efflux transporters in rats improves translational validation of brain radioligands. EJNMMI research 2020; 10: 124
  • 41 Simons BW, Turtle NF, Ulmert DH. et al. PSMA expression in the Hi-Myc model; extended utility of a representative model of prostate adenocarcinoma for biological insight and as a drug discovery tool. Prostate 2019; 79: 678-685
  • 42 Alstrup AK, Smith DF. Anaesthesia for positron emission tomography scanning of animal brains. Laboratory animals 2013; 47: 12-18
  • 43 Kyme AZ, Zhou VW, Meikle SR. et al. Optimised motion tracking for positron emission tomography studies of brain function in awake rats. PloS one 2011; 6: e21727
  • 44 Schulz D, Southekal S, Junnarkar SS. et al. Simultaneous assessment of rodent behavior and neurochemistry using a miniature positron emission tomograph. Nat Methods 2001; 8: 347-352
  • 45 Spangler-Bickell MG, de Laat B, Fulton R. et al. The effect of isoflurane on (18)F-FDG uptake in the rat brain: a fully conscious dynamic PET study using motion compensation. EJNMMI research 2016; 6: 86
  • 46 Jagoda EM, Vaquero JJ, Seidel J. et al. Experiment assessment of mass effects in the rat: implications for small animal PET imaging. Nucl Med Biol 2004; 31: 771-779
  • 47 Kung M-P, Kung HF. Mass effect of injected dose in small rodent imaging by SPECT and PET. Nucl Med Biol 2005; 32: 673-678