Subscribe to RSS
DOI: 10.1055/a-1377-8581
Intraoperatives Neuromonitoring: Elektroenzephalografie
Intraoperative Neuromonitoring: Electroencephalography
Zusammenfassung
Intraoperatives Neuromonitoring mittels Elektroenzephalografie (EEG) ermöglicht eine Überwachung der Narkosetiefe und soll das Auftreten intraoperativer Wachheit, eines postoperativen Delirs und postoperativer kognitiver Defizite verhindern sowie Prozesszeiten im OP verkürzen. Der Beitrag zeigt, wie Roh-EEG, Spektrogramme und prozessierte Indizes für unterschiedliche Altersgruppen und Anästhetika zu interpretieren sind und welcher klinische Nutzen sich daraus ergibt.
Abstract
Intraoperative neuromonitoring using electroencephalography (EEG) enables anaesthesiologists to monitor the depth of anaesthesia. It is intended to reduce the occurrence of intraoperative wakefulness, postoperative delirium and postoperative cognitive deficits and to shorten process times in the operating room. This article shows how to interpret the raw EEG, spectrograms and processed indices for different age groups and anaesthetics and summarizes the resulting clinical benefits. While propofol and volatile anesthetics produce characteristic frontal EEG signatures with a high activity of coherent α- and δ-waves, ketamine triggers an increase in rapid γ-waves, which leads to incorrectly high indices (BIS, PSI, NI) despite deep anaesthetic levels.
In children, frontal α-waves do not appear until the age of approx. 6 months and valid indices (BIS, PSI, NI) can only be derived starting at an age of approx. 12 months. Furthermore, children of preschool and elementary school age often show epileptiform discharges in the EEG during induction of anaesthesia, what is linked to emergence delirium. In adults, the intraoperative frontal α-power decreases significantly with increasing age and older patients tend to have an increased occurrence of burst suppression patterns during anaesthesia. Clinical benefits of EEG-based neuromonitoring comprise reduced doses of anaesthesia, shorter wake-up times after surgery and a lower incidence of intraoperative awareness during total intravenous anaesthesia. Moreover, anaesthesia guided by processed EEG indices can reduce the incidence of postoperative delirium and postoperative cognitive deficits in older patients. In-depth knowledge about intraoperative EEG changes that go beyond the interpretation of processed indices could lead to a further reduction in intra- and postoperative complications in the future.
-
Propofol und volatile Anästhetika zeigen intraoperativ im frontalen EEG eine charakteristische EEG-Signatur mit einer hohen Aktivität von kohärenten δ- und α-Wellen. Ketamin löst intraoperativ einen Anstieg schneller γ-Wellen aus, was zu falsch hohen Indizes (BIS, PSI, NI) führt. Eine Prämedikation mit Midazolam führt präoperativ zu einem Anstieg der β-Power und intraoperativ zu einer Aktivierung der frontalen α-Band-Power.
-
Frontale α-Wellen treten erst mit ca. 6 Monaten auf und valide Indizes (BIS, PSI, NI) sind erst ab einem Alter von ca. 12 Monaten abzuleiten. Kinder im Vorschul- und Grundschulalter zeigen unter Narkoseeinleitung häufig epileptiforme Entladungen im EEG, was assoziiert ist mit einem häufigeren Auftreten eines Aufwachdelirs.
-
Im höheren Lebensalter nimmt die intraoperative α-Power deutlich ab und ältere Patienten neigen zu einem gehäuften Auftreten von Burst-Suppression-Mustern intraoperativ.
-
Ein EEG-basiertes Neuromonitoring verringert die intraoperativen Anästhetikadosierungen und verkürzt die Aufwachzeit.
-
Ein EEG-basiertes Neuromonitoring ist bei reiner TIVA-Narkoseführung empfehlenswert, um intraoperative Awareness zu vermeiden.
-
Eine durch prozessierte EEG-Indizes gesteuerte Narkose kann das Auftreten eines postoperativen Delirs und postoperativer kognitiver Defizite bei älteren Patienten verringern.
Schlüsselwörter
Elektroenzephalografie - intraoperatives Neuromonitoring - Anästhesiologie - AllgemeinnarkoseKey words
electroencephalography - intraoperative neuromonitoring - anaesthesiology - general anaesthesiaPublication History
Article published online:
24 November 2021
© 2021. Thieme. All rights reserved.
Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany
-
Literatur
- 1 Brown EN, Lydic R, Schiff ND. General anesthesia, sleep, and coma. N Engl J Med 2010; 363: 2638-2650
- 2 Purdon PL, Pierce ET, Mukamel EA. et al. Electroencephalogram signatures of loss and recovery of consciousness from propofol. Proc Natl Acad Sci U S A 2013; 110: E1142-1151
- 3 Amzica F. Basic physiology of burst-suppression. Epilepsia 2009; 50 Suppl 12: 38-39
- 4 Bauer G, Trinka E, Kaplan PW. EEG patterns in hypoxic encephalopathies (post-cardiac arrest syndrome): fluctuations, transitions, and reactions. J Clin Neurophysiol 2013; 30: 477-489
- 5 Rampil IJ. A primer for EEG signal processing in anesthesia. Anesthesiology 1998; 89: 980-1002
- 6 Babadi B, Brown EN. A review of multitaper spectral analysis. IEEE Trans Biomed Eng 2014; 61: 1555-1564
- 7 Messner M, Beese U, Romstock J. et al. The bispectral index declines during neuromuscular block in fully awake persons. Anesth Analg 2003; 97: 488-491
- 8 Purdon PL, Sampson A, Pavone KJ. et al. Clinical Electroencephalography for Anesthesiologists: Part I: Background and Basic Signatures. Anesthesiology 2015; 123: 937-960
- 9 Vijayan S, Ching S, Purdon PL. et al. Thalamocortical mechanisms for the anteriorization of alpha rhythms during propofol-induced unconsciousness. J Neurosci 2013; 33: 11070-11075
- 10 McDowell TS, Pancrazio JJ, Barrett PQ. et al. Volatile anesthetic sensitivity of T-type calcium currents in various cell types. Anesth Analg 1999; 88: 168-173
- 11 Numan T, van Dellen E, Vleggaar FP. et al. Resting State EEG Characteristics During Sedation With Midazolam or Propofol in Older Subjects. Clin EEG Neurosci 2019; 50: 436-443
- 12 Windmann V, Spies C, Brown EN. et al. Influence of midazolam premedication on intraoperative EEG signatures in elderly patients. Clin Neurophysiol 2019; 130: 1673-1681
- 13 Koch S, Stegherr AM, Morgeli R. et al. Electroencephalogram dynamics in children during different levels of anaesthetic depth. Clin Neurophysiol 2017; 128: 2014-2021
- 14 Cornelissen L, Kim SE, Purdon PL. et al. Age-dependent electroencephalogram (EEG) patterns during sevoflurane general anesthesia in infants. Elife 2015; 4: e06513
- 15 Akeju O, Pavone KJ, Thum JA. et al. Age-dependency of sevoflurane-induced electroencephalogram dynamics in children. Br J Anaesth 2015; 115 Suppl 1: i66-i76
- 16 Koch S, Rupp L, Prager C. et al. Incidence of epileptiform discharges in children during induction of anaesthesia using Propofol versus Sevoflurane. Clin Neurophysiol 2018; 129: 1642-1648
- 17 Vakkuri A, Yli-Hankala A, Sarkela M. et al. Sevoflurane mask induction of anaesthesia is associated with epileptiform EEG in children. Acta Anaesthesiol Scand 2001; 45: 805-811
- 18 Koch S, Rupp L, Prager C. et al. Emergence delirium in children is related to epileptiform discharges during anaesthesia induction: An observational study. Eur J Anaesthesiol 2018; 35: 929-936
- 19 Martin JC, Liley DT, Harvey AS. et al. Alterations in the functional connectivity of frontal lobe networks preceding emergence delirium in children. Anesthesiology 2014; 121: 740-752
- 20 Purdon PL, Pavone KJ, Akeju O. et al. The Ageing Brain: Age-dependent changes in the electroencephalogram during propofol and sevoflurane general anaesthesia. Br J Anaesth 2015; 115 Suppl 1: i46-i57
- 21 Avidan MS, Zhang L, Burnside BA. et al. Anesthesia awareness and the bispectral index. N Engl J Med 2008; 358: 1097-1108
- 22 Gan TJ, Glass PS, Windsor A. et al. Bispectral index monitoring allows faster emergence and improved recovery from propofol, alfentanil, and nitrous oxide anesthesia. BIS Utility Study Group. Anesthesiology 1997; 87: 808-815
- 23 Avidan MS, Jacobsohn E, Glick D. et al. Prevention of intraoperative awareness in a high-risk surgical population. N Engl J Med 2011; 365: 591-600
- 24 Chan MT, Cheng BC, Lee TM. et al. BIS-guided anesthesia decreases postoperative delirium and cognitive decline. J Neurosurg Anesthesiol 2013; 25: 33-42
- 25 Culley DJ, Flaherty D, Fahey MC. et al. Poor Performance on a Preoperative Cognitive Screening Test Predicts Postoperative Complications in Older Orthopedic Surgical Patients. Anesthesiology 2017; 127: 765-774
- 26 Witlox J, Eurelings LS, de Jonghe JF. et al. Delirium in elderly patients and the risk of postdischarge mortality, institutionalization, and dementia: a meta-analysis. JAMA 2010; 304: 443-451
- 27 Sieber FE, Zakriya KJ, Gottschalk A. et al. Sedation depth during spinal anesthesia and the development of postoperative delirium in elderly patients undergoing hip fracture repair. Mayo Clin Proc 2010; 85: 18-26
- 28 Radtke FM, Franck M, Lendner J. et al. Monitoring depth of anaesthesia in a randomized trial decreases the rate of postoperative delirium but not postoperative cognitive dysfunction. Br J Anaesth 2013; 110 Suppl 1: i98-i105
- 29 Whitlock EL, Torres BA, Lin N. et al. Postoperative delirium in a substudy of cardiothoracic surgical patients in the BAG-RECALL clinical trial. Anesth Analg 2014; 118: 809-817
- 30 Fritz BA, Kalarickal PL, Maybrier HR. et al. Intraoperative Electroencephalogram Suppression Predicts Postoperative Delirium. Anesth Analg 2016; 122: 234-242
- 31 Aldecoa C, Bettelli G, Bilotta F. et al. European Society of Anaesthesiology evidence-based and consensus-based guideline on postoperative delirium. Eur J Anaesthesiol 2017; 34: 192-214
- 32 Wildes TS, Mickle AM, Ben Abdallah A. et al. Effect of Electroencephalography-Guided Anesthetic Administration on Postoperative Delirium Among Older Adults Undergoing Major Surgery: The ENGAGES Randomized Clinical Trial. JAMA 2019; 321: 473-483
- 33 Koch S, Spies C. Neuromonitoring in the elderly. Curr Opin Anaesthesiol 2019; 32: 101-107
- 34 Koch S. Perioperative electroencephalogram spectral dynamics related to postoperative delirium in older patients. Anesth Analg 2021;
- 35 Koch S, Feinkohl I, Chakravarty S. et al. Cognitive Impairment Is Associated with Absolute Intraoperative Frontal alpha-Band Power but Not with Baseline alpha-Band Power: A Pilot Study. Dement Geriatr Cogn Disord 2019; 48: 83-92
- 36 Giattino CM, Gardner JE, Sbahi FM. et al. Intraoperative Frontal Alpha-Band Power Correlates with Preoperative Neurocognitive Function in Older Adults. Front Syst Neurosci 2017; 11: 24
- 37 Punjasawadwong Y, Chau-In W, Laopaiboon M. et al. Processed electroencephalogram and evoked potential techniques for amelioration of postoperative delirium and cognitive dysfunction following non-cardiac and non-neurosurgical procedures in adults. Cochrane Database Syst Rev 2018; (05) CD011283