Fortschr Neurol Psychiatr 2021; 89(05): 221-232
DOI: 10.1055/a-1353-4893
Übersicht

Seltenere, aber klinisch relevante episodische Schwindelsyndrome

Less common, but clinically important episodic vertigo syndromes
Sandra Becker-Bense
1   Deutsches Schwindel- und Gleichgewichtszentrum (DSGZ), Ludwig-Maximilians-Universität München Deutschland
,
Doreen Huppert
1   Deutsches Schwindel- und Gleichgewichtszentrum (DSGZ), Ludwig-Maximilians-Universität München Deutschland
› Author Affiliations

Zusammenfassung

Die Differentialdiagnostik der selteneren, episodischen Schwindelsyndrome kann im klinischen Alltag eine Herausforderung darstellen, insbesondere wenn sie keine im Intervall messbaren Befunde in der neuro-ophthalmologischen oder -otologischen Routinediagnostik hinterlassen. Ursächlich für diese episodischen Schwindelsyndrome können physiologische Reaktionen aufgrund intersensorischer Inkongruenzen oder angeborene bzw. erworbene neuroanatomische/neurophysiologische Varianten sein, die zu vestibulären Reizsyndromen führen. In dieser Übersicht fokussieren wir auf die folgenden, aus unserer Sicht wichtigen vestibulären Syndrome: Bewegungskrankheit, Mal de Debarquement Syndrom, Visuelle Höhenintoleranz, Vestibularisparoxysmie, Zervikaler Schwindel, Episodische Ataxie Typ II und Syndrome eines dritten mobilen Fensters wie das Syndrom der Dehiszenz des superioren Bogengangs. Die Ausprägung reicht von milden Symptomen mit geringer Belastung bis hin zu schweren Krankheitsbildern mit relevanter Alltagseinschränkung. Sie können vom Kindes- oder Jugendalter bis ins Senium auftreten, teilweise mit abweichender Symptomatik. Durch gezielte Anamnese und ggf. erweiterte vestibuläre Diagnostik in einem spezialisierten Zentrum lassen sich diese Syndrome oft klar herausarbeiten und einer erfolgreichen Therapie zuführen.

Abstract

The differential diagnosis of rare episodic vertigo syndromes can be a challenge in everyday clinical practice, especially if in the attack-free interval there are no or only a few specific neuro-ophthalmological or neuro-otological findings in routine laboratory and clinical examinations. These episodic vertigo syndromes may be caused by physiological reactions due to intersensory incongruences and congenital or acquired neuroanatomical/neurophysiological variants that may lead to vestibular excitation syndromes. In this overview, we focus on the following vestibular syndromes that are - in our opinion - clinically relevant: motion sickness, mal de debarquement syndrome, visual height intolerance, vestibular paroxysmia, cervical dizziness, episodic ataxia type II, and syndromes of a third mobile window such as superior canal dehiscence syndrome. The manifestation of vestibular excitation syndromes may range from mild physiological reactions to severe clinical pictures with significant limitations in daily life. They can manifest from childhood or adolescence through to old age, sometimes with variant symptomatology. With a targeted medical history taking and, if necessary, extended vestibular diagnostics in a specialized center, these syndromes can often be clearly identified and successfully treated.



Publication History

Received: 30 November 2020

Accepted: 07 January 2021

Article published online:
02 March 2021

© 2021. Thieme. All rights reserved.

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • Literatur

  • 1 Brandt T, Dieterich M, Strupp M. Vertigo – Leitsymptom Schwindel. Springer Verlag; Berlin, Heidelberg: 2013. 2. Auflage.
  • 2 Money KE. Motion sickness. Physiol Rev 1970; 50: 1-39
  • 3 Golding JF. Motion sickness. Handb Clin Neurol 2016; 137: 371-390
  • 4 Zhang LL, Wang JQ, Qi R. et al. Motion sickness: Current knowledge and recent advantage. CNS Neurosci Ther 2016; 22: 15-24
  • 5 Reason JT. Motion sickness adaptation: A neural mismatch model. J Roy Soc Med 1978; 71: 819-829
  • 6 Dichgans J, Brandt T. Visual-vestibular interaction: Effects of self-motion perception and postural control. In: Held R. Leibowitz HW. Teuber HL. eds. Handbook of Sensory Physiology. vol. VIII. Berlin Heidelberg New York: Perception. Springer; 1978: 755-804
  • 7 Bertolini G, Straumann D. Moving in a moving world: A review on vestibular motion sickness. Front Neurol 2016; 7: 14. DOI: 10.3389/fneur.2016.00014.
  • 8 Evans RW, Marcus D, Furman JM. Motion sickness and migraine. Headache 2007; 47: 607-610
  • 9 Cuomo-Granston A, Drummond PD. Migraine and motion sickness: What is the link?. Prog Neurobiol 2010; 91: 300-312
  • 10 Boldingh MI, Ljostad U, Mygland A. et al. Vestibular sensitivity in vestibular migraine: VEMP’s and motion sickness susceptibility. Cephalalgia 2011; 31: 1211-1219
  • 11 Takahashi M, Ogata M, Miura M. The significance of motion sickness in the vestibular system. J Vestib Res 1997; 7: 179-187
  • 12 Murdin L, Chamberlain F, Cheema S. et al. Motion sickness in migraine and vestibular disorders. J Neurol Neurosurg Psychiatry 2015; 86: 585-587
  • 13 Strupp M, Brandt T, Huppert D. et al. Prevalence of motion sickness in various vestibular disorders: A study on 749 patients. J Neurol 2018; 265 (Suppl 1): S95-S97
  • 14 Koch A, Cascorbi I, Westhofen M. et al. The neurophysiology and treatment of motion sickness. Dtsch Arztebl Int 2018; 115: 687-696
  • 15 Murdin L, Golding J, Bronstein A. Managing motion sickness. BMJ 2011; 343: d7430
  • 16 Leung AKC, Hon KL. Motion sickness: An overview. Drugs in Context 2019; 8: 9-4
  • 17 Wood CD, Graybiel A. Evaluation of antimotion sickness drugs: A new effective remedy revealed. Aerospace Med 1970; 41: 932-933
  • 18 Brandt T. Optisch-vestibuläre Bewegungskrankheit, Höhenschwindel und klinische Schwindelformen. Fortschr Med 1976; 94: 1177-1188
  • 19 Huppert D, Grill E, Brandt T. Survey of motion sickness susceptibility in children and adolescents aged 3 months to 18 years. J Neurol 2019; 266: 65-73
  • 20 Dobie T, McBride D, Dopie TJ. et al. The effects of age and sex on susceptibility to motion sickness. Aviat Space Environ Med 2001; 72: 13-20
  • 21 Brown JJ, Baloh RW. Persistent mal de debarquement syndrome: A motion-induced subjective disorder of balance. Am J Otolaryngol 1987; 8: 219-222
  • 22 Murphy TP. Mal de debarquement syndrome: A forgotten entity?. Otolaryngol Head Neck Surg 1993; 109: 10-13
  • 23 Cha YH, Baloh R, Cho C. et al. Mal de debarquement syndrome: Diagnostic criteria consensus document of the classification committee of the Bárány Society. J Vestib Res 2020; DOI: 10.3233/VES-200714. Online ahead of print
  • 24 Van Ombergen A, Van Rompaey V, Maes LK. et al. Mal de debarquement syndrome: A systematic review. J Neurol 2016; 263: 843-854
  • 25 Canceri JM, Brown R, Watson SR. et al. Examination of current treatments and symptom management strategies used by patients with mal de debarquement syndrome. Front Neurol 2018; 9: 943. DOI: 10.3389/fneur.2018.00943.
  • 26 Cha YH, Cui YY, Baloh RW. Comprehensive clinical profile of mal de debarquement syndrome. Front Neurol 2018; 9: 261. DOI: 10.3389/fneur.2018.00261.
  • 27 Cohen B. Dedication to Mingjia Dai, Ph.D. for discovery of the first successful treatment of the mal de debarquement syndrome. Front Neurol 2019; 10: 1196. DOI: 10.3389/fneur.2019.01196.
  • 28 Moeller L, Lempert T. Mal de debarquement: Pseudo-hallucinations from vestibular memory?. J Neurol 2007; 254: 813-815
  • 29 Schepermann A, Bardins S, Penkava J. et al. Approach to an experimental model of mal de debarquement syndrome. J Neurol 2019; 266 (Suppl 1): 74-79
  • 30 Wawrzynski W, Krata P. On ship roll resonance frequency. Ocean Eng 2016; 126: 92-114
  • 31 Dai M, Cohen B, Smouha E. et al. Readaptation of the mal de debarquement syndrome: A 1-year follow-up. Front Neurol 2014; 5: 124. DOI: 10.3389/fneur.2014.00124.eCollection2014.
  • 32 Cohen B, Yakushin SB, Cho C. Hypothesis: The vestibular and cerebellar basis of the mal de debarquement syndrome. Front Neurol 2018; 9: 28. DOI: 10.3389/fneur.2018.00028.
  • 33 Duval ER, Javanbakht A. Liberzon I Neural circuits in anxiety and stress disorders: A focused review. Ther Clin Risk Manag 2015; 11: 115-126
  • 34 Popp P, Zu Eulenburg P, Stephan T. et al. Cortical alterations in phobic postural vertigo–a multimodal imaging approach. Ann Clin Translat Neurol 2018; 14 (05) : 717-729
  • 35 Huber J, Flanagin VL, Popp P. et al. Network changes in phobic postural vertigo. Brain Behav 2020; 10: e01622 . 10.1002/brb3.1622.
  • 36 Jeon S-H, Park Y-H, Oh S-Y. et al. Neural correlates of transient Mal de Debarquement syndrome: Activation of prefrontal and deactivation of cerebellar networks correlate with neuropsychological assessment. Front Neurol 2020; 11: 585. DOI: 10.3389/fneur.2020.00585.
  • 37 Cha YH, Cui YY, Baloh R. Repetitive transcranial magnetic stimulation for mal de debarquement-syndrome. Otol Neurootol 2013; 34: 175-179
  • 38 Cha YH, Gleghorn D, Doudican B. Occipital and cerebellar theta burst stimulation for mal de debarquement syndrome. Otol Neurotol 2019; 40: e928-e937. DOI: 10.1097/MAO.0000000000002341.
  • 39 Brandt T, Huppert D. Fear of heights and visual height intolerance. Curr Opin Neurol 2014; 27: 111-117
  • 40 Huppert D, Grill E, Brandt T. A new questionnaire for estimating the severity of visual height intolerance and acrophobia by a metric interval scale. Front Neurol. 2017 DOI: 10.3389/fneur.2017.00211
  • 41 Huppert D, Grill E, Brandt T. Down on heights? One in three has visual height intolerance. J Neurol 2013; 260: 597-604
  • 42 Kapfhammer HP, Fitz W, Huppert D. et al. Visual height intolerance and acrophobia: Distressing partners for life. J Neurol 2016; 263: 1946-1953
  • 43 LeBeau RT, Glenn D, Liao B. et al. Specific phobia: ErA review of DSM-IV specific phobia and preliminary recommendations for DSM-V. Depress Anxiety 2010; 27: 148-167
  • 44 Kapfhammer HP, Huppert D, Grill E. et al. Visual height intolerance and acrophobia: Clinical characteristics and comorbidity patterns. Eur Arch Psychiatry Clin Neurosci 2015; 265: 375-385
  • 45 Schäffler F, Müller M, Huppert D. et al. Consequences of visual height intolerance for quality of life: A qualitative study. Qual Life Res 2014; 23: 697-705
  • 46 Lahmann C, Henningsen P, Brandt T. et al. Psychiatric comorbidity and psychosocial impairment among patients with vertigo and dizziness. J Neurol Neurosurg Psychiatry 2015; 86: 302-308
  • 47 Brandt T, Grill E, Strupp M. et al. Susceptibility of fear of heights in bilateral vestibulopathy and other disorders of vertigo and balance. Front Neurol. 2018 DOI: 10.3389/fneur.2018.00406
  • 48 Kugler G, Huppert D, Schneider E. et al. Fear of heights freezes gaze to the horizon. J Vest Res 2014; a; 24: 433-441
  • 49 Kugler G, Huppert D, Eckl M. et al. Visual exploration during locomotion limited by fear of heights. Plos One 2014; b; 9 (08) : e105906. DOI: 10.1371/journal.pone.0105906.
  • 50 Wühr M, Kugler G, Schniepp R. et al. Balance control and anti-gravity muscle activity during the experience of fear at heights. Physiol Rep 2014; 18 (2(2)): e00232. DOI: 10.1002/phy2.232.eCollection.
  • 51 Schniepp R, Kugler G, Wuehr M. et al. Quantification of gait changes in subjects with visual height intolerance when exposed to heights. Front Hum Neurosci. 2014 DOI: 10.3389/fnhum.2014.00963.eCollection2014
  • 52 Brandt T, Kugler G, Schniepp R. et al. Acrophobia impairs visual exploration and balance during standing and walking. Ann NY Acad Sci 2015; 1343: 37-48
  • 53 Wühr M, Breitkopf K, Decker J. et al. Fear of heights in virtual reality saturates 20 to 40 m above ground. J Neurol 2019; 266: 80-87
  • 54 Brandt T, Arnold F, Bles W. et al. The mechanism of physiological height vertigo: I Theoretial approach and psychophysics. Acta Otolaryngol (Stockh) 1980; 89: 513-523
  • 55 Huppert D, Wühr M, Brandt T. Acrophobia and visual height intolerance: Advances in epidemiology and mechanisms. J Neurol. 2020 DOI: 10.1007/s00415-020-09805-4
  • 56 Abelson JL, Curtis GC. Cardiac and neuroendocrine responses to exposure therapy in height phobics: Desynchrony within the “physiological response system”. Behav Res Ther 1989; 27: 561-567
  • 57 Huppert D, Brandt T. Fear of heights and visual height intolerance in children 8 to 10 years. J Child Adolesc Behav. 2015 3. (219). DOI: 10.4172/2375-4494.1000219
  • 58 Janetta PJ. Neurovascular cross-compression of the eight cranial nerve in patients with vertigo and tinnitus. PSurg Forum 1975; 26: 467-469
  • 59 Brandt T, Dieterich M. Vestibular paroxysmia: Vascular compression of the eighth nerve?. Lancet 1994; 343: 798-799
  • 60 Best C, Gawehn J, Krämer HH. et al. MRI and neurophysiology in vestibular paroxysmia: Contradiction and correlation. J Neurol Neurosurg Psychiatry 2013; 84: 1349-1356
  • 61 Hüfner K, Barresi D, Glaser M. et al. Vestibular paroxysmia: Diagnostic features and medical treatment. Neurol 2008; 71: 1006-1014
  • 62 Strupp M, López-Escámez JA, Kim J-S. et al. Consensus document of the Committee for the Classification of Vestibular Disorders of the Bárány Society. J Vestibular Res 2016; 26: 409-415
  • 63 Rommer PS, Wiest G, Kronnerwetter C. et al. 7-Tesla MRI demonstrates absence of structural lesions in patients with vestibular paroxysmia. Front Neuroanat 2015; 9: 81. DOI: 10.3389/fnana.2015.00081.
  • 64 Strupp M, von Stuckrad-barre S, Brandt T. et al. Teaching neuroimages: Compression of the eighth cranial nerve causes vestibular paroxysmia. Neurol 2013; 80 (07) : e77. DOI: 10.1212/WNL.0b013e318281cc2c.
  • 65 Moller MB, Moller AR, Jannetta PJ. et al. Diagnosis and surgical treatment of disabling positional vertigo. J Neurosurg 1986; 64: 21-28
  • 66 Lehnen N, Langhagen T. Heinen F. et al. Vestibular paroxysmia in children: A treatable cause cause of short vertigo attacks. Dev Med Child Neurol 2014; 57 (04) : 393-396
  • 67 Huppert D, Langhagen T, Brandt T. Benign course of episodic dizziness disorders in childhood. J Neurol 2017; 264: S4-S6
  • 68 Minor LB, Solomon D, Zinreich JS. et al. Sound- and/or pressure-induced vertigo due to bone dehiscence of the superior semicircular canal. Arch Otolaryngol Head Neck Surg 1998; 124: 249-258
  • 69 Chien WW, Carey JP, Minor LB. Canal dehiscence. Curr Opin Neurol 2011; 24: 25-31
  • 70 Ward BK, Carey JP, Minor LB. Superior Canal Dehiscence Syndrome: Lessons from the First 20 Years. Front Neurol 2017; 8: 177. DOI: 10.3389/fneur.2017.00177.
  • 71 Manzari L, Burgess AM, McGarvie LA. et al. An indicator of probable semicircular canal dehiscence: Ocular vestibular evoked myogenic potentials to high frequencies. Otolaryngol Head Neck Surg 2013; 149: 142-145
  • 72 Janky KL, Nguyen KD, Welgampola M. et al. Air-conducted oVEMPs provide the best separation between intact and superior canal dehiscent labyrinths. Otol Neurotol 2013; 34: 127-134
  • 73 Niesten MEF, Stieger C, Lee DJ. et al. Assessment of the effects of superior canal dehiscence location and size on intracochlear sound pressures. Audiol Neurootol 2015; 20: 62-71
  • 74 Strupp M, Mandalà M, López-Escámez JA. Peripheral vestibular disorders: An update. Curr Opin Neurol 2019; Feb; 32 (01) : 165-173
  • 75 Walsh EM. Current management of superior semicircular canal dehiscence syndrome. Curr Opin Otolaryngol Head Neck Surg 2020; 28: 340-345
  • 76 Lee GS, Zhou G, Poen D. et al. Clinical experience in diagnosis and management of superior semicircular canal dehiscence in children. Laryngoscope 2011; 121: 2256-2261
  • 77 Brandt T. Cervical vertigo – Reality or fiction?. Audiol Neurotol 1996; 1: 187-196
  • 78 Brandt T, Bronstein A. Cervical vertigo. J Neurol Neurosurg Psychiatry 2001; 71: 8-12
  • 79 Hain TC. Cervicogenic causes of vertigo. Curr Opin Neurol 2015; 28: 69-73
  • 80 Brandt T, Huppert D. A new type of cervical vertigo: Head motion-induced spells in acute neck pain. Neurol 2016; 86: 974-975
  • 81 Holst EV, Mittelstaedt H. Das Reafferenzprinzip (Wechselwirkung zwischen Zentralnervensystem und Peripherie). Naturwiss 1950; 37: 464-476
  • 82 Kuether T, Nesbit GM, Clark WM. et al. Rotational vertebral artery occlusion: A mechanism of vertebrobasilar insufficiency. Neurosurg 1997; 41: 427-432
  • 83 Brandt T, Baloh RW. Rotational vertebral artery occlusion. A clinical entity or various syndromes?. Neurol 2005; 65: 1156-1157
  • 84 Rastogi V, Rawls A, Moore O. et al. Rare etiology of Bow Hunter’s syndrome and systematic review of literature. J Vasc Interv Neurol 2015; 8: 7-16
  • 85 Duan G, Xu J, Shi J. et al. Advances in the pathogenesis, diagnosis and treatment of Bow Hunter’s syndrome: A comprehensive review of the literature. Intervent Neurol 2016; 5: 29-38
  • 86 Rosengart A, Hedges TR, Teal PA. et al. Intermittent downbeat nystagmus due to vertebral artery compression. Neurol 1993; 43: 216-218
  • 87 Iida Y, Murata H, Johkura K. et al. Bow Hunter’s syndrome by nondominant vertebral artery compression: A case report, literature review, and significance of downbeat nystagmus as the diagnostic clue. World Neurosurg 2018; 111: 367-372
  • 88 Xue S, Shi H, Du X. et al. Bow Hunter’s syndrome combined with ipsilateral vertebral artery dissection/pseudoaneurysm: Case study and literature review. Br J Neurosurg. 2020 10.1080/02688697.2020.1718604 (Epub ahead of print)
  • 89 Strupp M, Planck JH, Arbusow V. et al. Rotational vertebral artery occlusion syndrome with vertigo due to “labyrinthine excitation”. Neurology 2000; 54: 1376-1379
  • 90 Choi KD, Shin HY, Kim JS. et al. Rotational vertebral artery syndrome: Occulographic analysis of nystagmus. Neurol 2005; 65: 1287-1290
  • 91 Jen JC, Wan J. Episodic ataxias. Handb Clin Neurol 2018; 155: 205-215. DOI: 10.1016/b978-0-444-64189-2.00013-5.
  • 92 Kipfer S, Strupp M. The Clinical Spectrum of Autosomal-Dominant Episodic Ataxias. Mov Disord Clin Pract 2014; 1: 285-290 DOI: 10.1002/mdc3.12075.
  • 93 Penkava J, Ledderose S, Chahrokh Zadeh S. et al. A novel pathogenic CACNA1A variant causing episodic ataxia type 2 (EA2) spectrum phenotype in four family members and a novel combined therapy. J Neurol. 2020 DOI: 10.1007/s00415-020-10190-1 (Epub ahead of print)
  • 94 Jen JC, Graves TD, Hess EJ. et al. Primary episodic ataxias: Diagnosis,pathogenesis and treatment. Brain 2007; 130: 2484-2439
  • 95 Jen JC, Baloh RW. Familial episodic ataxia: A model for migrainous vertigo. Ann NY Acad Sci 2009; 1164: 252-256
  • 96 Zesiewicz TA, Wilmot G, Han Kuo S. et al. Comprehensive systematic review summary: Treatment of cerebellar motor dysfunction and ataxia: Report of the Guideline Development, Dissemination, and Implementation Subcommittee of the American Academy of Neurology. Neurol 2018; 90: 464-471
  • 97 Gandini J, Manto M, Bremova-Ertl T. et al. The neurological update: Therapies for cerebellar ataxias in 2020. J Neurol 2020; 267: 1211-1220
  • 98 Strupp M, Kalla R, Claassen J. et al. A randomized trial of 4-aminopyridine in EA2 and related familial episodic ataxias. Neurol 2011; 77: 269-275
  • 99 Claassen J, Teufel J, Kalla R. et al. Effects of dalfampridine on attacks in patients with episodic ataxia type 2: An observational study. J Neurol 2013; 260: 668-669
  • 100 Strupp M, Zwergal A, Brandt T. Episodic ataxia type 2. Neurother 2007; 4: 267-273