Osteologie 2021; 30(02): 173-181
DOI: 10.1055/a-1287-6016
Original Article

Bone and muscle development in three inbred female mouse strains

Knochen- und Muskelentwicklung in drei Inzuchtmausstämmen
1   Department of Pathophysiology and Allergy Research, Medical University of Vienna, Austria
,
Maria Papageorgiou
1   Department of Pathophysiology and Allergy Research, Medical University of Vienna, Austria
2   Division of Bone Diseases, Department of Internal Medicine Specialties, Faculty of Medicine, Geneva University Hospital, Rue Gabrielle-Perret-Gentil 4, 1205 Genève, Switzerland
,
Katharina Wahl-Figlash
1   Department of Pathophysiology and Allergy Research, Medical University of Vienna, Austria
,
3   Department of Physical Medicine, Medical University of Vienna,, Währinger Gürtel 18–20, 1190 Vienna, Austria
,
1   Department of Pathophysiology and Allergy Research, Medical University of Vienna, Austria
› Author Affiliations
Funding Sources This work was funded by a grant from the ‘Medizinisch Wissenschaftlicher Fonds des Bürgermeisters der Bundeshauptstadt Wien’ (Project Nr. 15159BGM) and from Fresenius Kabi GmbH Austria (Project Nr. 648610).

ABSTRACT

Muscle force is thought to be one of the main determinants of bone development. Hence, peak muscle growth is expected to precede peak bone growth. In this study, we investigated muscle and bone development in female C57BL/6 J, DBA/2JRj, and C3H/HeOuJ mice. Femoral cortical and trabecular bone structure and the weights of selected muscles were assessed at the ages of 8, 16, and 24 weeks. Muscle mass increased from 8 to 24 weeks in all 3 strains, suggesting peak muscle development at 24 weeks or later. Bone volume fraction, trabecular number, and connectivity density of the femur decreased or remained unchanged, whereas trabecular density and trabecular thickness largely increased. These results suggest a peak in trabecular bone accrual at 8 weeks or earlier followed by further increases in density and structural reorganization of trabeculae. Cortical density, cortical thickness, and cortical cross sectional area increased over time, suggesting a peak in cortical bone accrual at 24 weeks or later. In conclusion, our data provide evidence that growth of muscle lags behind trabecular bone accrual.

ZUSAMMENFASSUNG

Die Muskelkraft wird als eine der wichtigsten Determinanten der Knochenentwicklung betrachtet. Demzufolge sollte ein Maximum im Muskelwachstum einem Maximum im Knochenwachstum vorangehen. In der vorliegenden Studie wurde die Muskel- und Knochenentwicklung in weiblichen C57BL/6J-, DBA/2JRj- und C3H/HeOuJ-Mäusen analysiert. In 8, 16 und 24 Wochen alten Mäusen wurden die kortikale und trabekuläre Knochenstruktur im Femur und die Gewichte ausgewählter Muskeln untersucht. Ein Maximum im Muskelwachstum liegt, unseren Ergebnissen folgend, bei 24 Wochen oder später, wohingegen ein Maximum im trabekulären Knochenwachstum bereits bei 8 Wochen oder früher erreicht wird. Ein Maximum im kortikalen Knochenwachstum liegt ebenfalls bei 24 Wochen oder später. Zusammenfassend zeigen unsere Ergebnisse, dass ein Maximum im trabekulären Knochenwachstum einem Maximum im Muskelwachstum vorangeht. Zusätzliche mechanische Stimuli oder gegenseitige Beeinflussungen auf genetischer und biochemischer Ebene könnten daher eine möglicherweise unterschätzte Rolle im Verhältnis dieser beiden Gewebe während des Wachstums spielen.

Supplymentary Material



Publication History

Article published online:
26 January 2021

© 2021. Thieme. All rights reserved.

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

  • 1 Weaver CM, Gordon CM, Janz KF. et al. The National Osteoporosis Foundation’s position statement on peak bone mass development and lifestyle factors: A systematic review and implementation recommendations. Osteoporos Int 2016; 4: 1281-1386
  • 2 Bonjour JP, Chevalley T, Ferrari S. et al. The importance and relevance of peak bone mass in the prevalence of osteoporosis. Salud Publica Mex 2009; 51 (Suppl. 01) S5-17 DOI: 10.1590/s0036-36342009000700004.
  • 3 Sioen I, Lust E, De Henauw S. et al. Associations Between Body Composition and Bone Health in Children and Adolescents: A Systematic Review. Calci Tissue Int 2016; 6: 557-577
  • 4 Locquet M, Beaudart C, Durieux N. et al. Relationship between the changes over time of bone mass and muscle health in children and adults: A systematic review and meta-analysis. BMC Musculoskelet Disord 2019; 1: 429
  • 5 Frost HM. Muscle, bone, and the Utah paradigm: A 1999 overview. Med Sci Sports Exerc 2000; 5: 911-917
  • 6 Schoenau E. Bone mass increase in puberty: What makes it happen?. Horm Res 2006; 65 (Suppl. 02) 2-10 DOI: 10.1159/000091748.
  • 7 Frost HM, Schonau E. The “muscle-bone unit” in children and adolescents: A 2000 overview. J Pediatr Endocrinol Metab 2000; 6: 571-590
  • 8 Avin KG, Bloomfield SA, Gross TS. et al. Biomechanical aspects of the muscle-bone interaction. Curr Osteoporos Rep 2015; 1: 1-8
  • 9 Rauch F, Bailey DA, Baxter-Jones A. et al. The ‘muscle-bone unit’ during the pubertal growth spurt. Bone 2004; 5: 771-775
  • 10 Jackowski SA, Faulkner RA, Farthing JP. et al. Peak lean tissue mass accrual precedes changes in bone strength indices at the proximal femur during the pubertal growth spurt. Bone 2009; 6: 1186-1190
  • 11 Xu L, Nicholson P, Wang Q. et al. Bone and muscle development during puberty in girls: A seven-year longitudinal study. J Bone Miner Res 2009; 10: 1693-1698
  • 12 Beamer WG, Donahue LR, Rosen CJ. et al. Genetic variability in adult bone density among inbred strains of mice. Bone. 1996; 5: 397-403
  • 13 Akhter MP, Iwaniec UT, Covey MA. et al. Genetic variations in bone density, histomorphometry, and strength in mice. Calci Tissue Int 2000; 4: 337-344
  • 14 Ferguson VL, Ayers RA, Bateman TA. et al. Bone development and age-related bone loss in male C57BL/6J mice. Bone 2003; 3: 387-398
  • 15 Glatt V, Canalis E, Stadmeyer L. et al. Age-related changes in trabecular architecture differ in female and male C57BL/6J mice. J Bone Miner Res 2007; 8: 1197-1207
  • 16 Willinghamm MD, Brodt MD, Lee KL. et al. Age-related changes in bone structure and strength in female and male BALB/c mice. Calci Tissue Int 2010; 6: 470-483
  • 17 Gargiulo S, Gramanzini M, Megna R. et al. Evaluation of growth patterns and body composition in C57Bl/6J mice using dual energy X-ray absorptiometry. Biomed Res Int 2014; 253067 DOI: 10.1155/2014/253067.
  • 18 Papageorgiou M, Föger-Samwald U, Wahl K. et al. Age- and Strain-Related Differences in Bone Microstructure and Body Composition During Development in Inbred Male Mouse Strains. Calci Tissue Int 2020 106. 431-443 DOI: 10.1007/s00223-019-00652-8
  • 19 Bouxsein ML, Boyd SK, Christiansen BA. et al. Guidelines for assessment of bone microstructure in rodents using micro-computed tomography. J Bone Miner Res 2010; 7: 1468-1486
  • 20 Voide R, van Lenthe GH, Muller R. Bone morphometry strongly predicts cortical bone stiffness and strength, but not toughness, in inbred mouse models of high and low bone mass. J Bone Miner Res 2008; 8: 1194-1203
  • 21 Turner CH, Hsieh YF, Muller R. et al. Genetic regulation of cortical and trabecular bone strength and microstructure in inbred strains of mice. J Bone Miner Res 2000; 6: 1126-1131
  • 22 Brotto M, Bonewald L. Bone and muscle: Interactions beyond mechanical. Bone 2015; 80: 109-114 DOI: 10.1016/j.bone.2015.02.010.
  • 23 Vico L, Hargens A. Skeletal changes during and after spaceflight. Nat Rev Rheumatol 2018; 4: 229-245
  • 24 Gordon CM, Zemel BS, Wren TA. et al. The Determinants of Peak Bone Mass. J Pediatr 2017; 180: 261-269 DOI: 10.1016/j.jpeds.2016.09.056.
  • 25 Schneider P, Stauber M, Voide R. et al. Ultrastructural properties in cortical bone vary greatly in two inbred strains of mice as assessed by synchrotron light based micro- and nano-CT. J Bone Miner Res 2007; 10: 1557-1570
  • 26 Sabsovich I, Clark JD, Liao G. et al. Bone microstructure and its associated genetic variability in 12 inbred mouse strains: MicroCT study and in silico genome scan. Bone 2008; 2: 439-451