Planta Med 2020; 86(16): 1216-1224
DOI: 10.1055/a-1203-0623
Biological and Pharmacological Activity
Original Papers

Salazinic Acid-Derived Depsidones and Diphenylethers with α-Glucosidase Inhibitory Activity from the Lichen Parmotrema dilatatum

Asshaima Paramita Devi*
1   Center of Excellence in Natural Products Chemistry, Department of Chemistry, Faculty of Science, Chulalongkorn University, Pathumwan, Bangkok, Thailand
2   Program in Biotechnology, Faculty of Science, Chulalongkorn University, Pathumwan, Bangkok, Thailand
,
Thuc-Huy Duong*
3   Department of Chemistry, Ho Chi Minh City University of Education, Ho Chi Minh City, Vietnam
,
Solenn Ferron
4   Université Rennes, CNRS, ISCR (Institut des Sciences Chimiques de Rennes) – UMR 6226, Rennes, France
,
Mehdi A. Beniddir
5   Équipe «Pharmacognosie-Chimie des Substances Naturelles», BioCIS, Université Paris-Sud, CNRS, Université Paris-Saclay, Châtenay-Malabry, France
,
Minh-Hiep Dinh
6   Management Board of Ho Chi Minh City Agricultural Hi-Tech Park, Binh Thanh, Ho Chi Minh City, Vietnam
,
Van-Kieu Nguyen
7   Institute of Fundamental and Applied Sciences, Duy Tan University, Ho Chi Minh City, Vietnam
8   Faculty of Natural Sciences, Duy Tan University, Da Nang, Vietnam
,
Nguyen-Kim-Tuyen Pham
9   Faculty of Environmental Science, Sai Gon University, Vietnam
,
Dinh-Hung Mac
10   Department of Organic Chemistry, VNU University of Science, Hoan Kiem, Hanoi, Vietnam
,
Joël Boustie
4   Université Rennes, CNRS, ISCR (Institut des Sciences Chimiques de Rennes) – UMR 6226, Rennes, France
,
Warinthorn Chavasiri**
1   Center of Excellence in Natural Products Chemistry, Department of Chemistry, Faculty of Science, Chulalongkorn University, Pathumwan, Bangkok, Thailand
,
5   Équipe «Pharmacognosie-Chimie des Substances Naturelles», BioCIS, Université Paris-Sud, CNRS, Université Paris-Saclay, Châtenay-Malabry, France
› Author Affiliations

Abstract

Three new depsidones, parmosidones F – G (1 – 2), and 8′-O-methylsalazinic acid (3), and 3 new diphenylethers, parmetherines A – C (4 – 6), together with 2 known congeners were isolated from the whole thalli of Parmotrema dilatatum, a foliose chlorolichen. Their structures were unambiguously determined by extensive spectroscopic analyses and comparison with literature data. The isolated polyphenolics were assayed for their α-glucosidase inhibitory activities. Newly reported benzylated depsidones 1 and 2 in particular inhibited α-glucosidase with IC50 values of 2.2 and 4.3 µM, respectively, and are thus more potent than the positive control, acarbose.

* These authors contributed equally to this work (co-first authors).


** These authors contributed equally to this work (co-last authors).


Supporting Information



Publication History

Received: 24 February 2020

Accepted after revision: 12 June 2020

Article published online:
20 August 2020

© 2020. Thieme. All rights reserved.

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

  • 1 Zheng Y, Ley SH, Hu FB. Global aetiology and epidemiology of type 2 diabetes mellitus and its complications. Nat Rev Endocrinol 2018; 14: 88
  • 2 WHO. Diabetes. Available at (Accessed February 19, 2020): https://www.who.int/health-topics/diabetes%23tab=tab_1
  • 3 Holman N, Young B, Gadsby R. Current prevalence of type 1 and type 2 diabetes in adults and children in the UK. Diabet Med 2015; 32: 1119-1120
  • 4 Abubakar II, Tillmann T, Banerjee A. Global, regional, and national age-sex specific all-cause and cause-specific mortality for 240 causes of death, 1990–2013: a systematic analysis for the Global Burden of Disease Study 2013. Lancet 2015; 385: 117-171
  • 5 Sels JPJ, Huijberts MS, Wolffenbuttel BH. Miglitol, a new α-glucosidase inhibitor. Expert Opin Pharmacother 1999; 1: 149-156
  • 6 Van De Laar FA, Lucassen PL, Akkermans RP, Van De Lisdonk EH, Rutten GE, Van Weel C. α-Glucosidase inhibitors for patients with type 2 diabetes: results from a Cochrane systematic review and meta-analysis. Diabetes Care 2005; 28: 154-163
  • 7 Wardrop DJ, Waidyarachchi SL. Synthesis and biological activity of naturally occurring α-glucosidase inhibitors. Nat Prod Rep 2010; 27: 1431-1468
  • 8 Choudhary MI, Ali M, Wahab A, Khan A, Rasheed S, Shyaula SL, Rahman A. New antiglycation and enzyme inhibitors from Parmotrema cooperi . Sci China Chem 2011; 54: 1926-1931
  • 9 Ngoupayo J, Tabopda TK, Ali MS, Tsamo E. α-Glucosidase inhibitors from Garcinia brevipedicellata (Clusiaceae). Chem Pharm Bull 2008; 56: 1466-1469
  • 10 Karunaratne V, Thadhani VM, Khan SN, Choudhary MI. Potent α-glucosidase inhibitors from the lichen Cladonia species from Sri Lanka. J Natl Sci Found Sri 2014; 42: 95-98
  • 11 Wang JF, Zhou LM, Chen ST, Yang B, Liao SR, Kong FD, Lin XP, Wang FZ, Zhou XF, Liu YH. New chlorinated diphenyl ethers and xanthones from a deep-sea-derived fungus Penicillium chrysogenum SCSIO 41001. Fitoterapia 2018; 125: 49-54
  • 12 Ma K, Han J, Bao L, Wei T, Liu H. Two sarcoviolins with antioxidative and α-glucosidase inhibitory activity from the edible mushroom Sarcodon leucopus collected in Tibet. J Nat Prod 2014; 77: 942-947
  • 13 Grube M, Cardinale M, de Castro JV, Müller H, Berg G. Species-specific structural and functional diversity of bacterial communities in lichen symbioses. ISME J 2009; 3: 1105-1115
  • 14 Spribille T, Tuovinen V, Resl P, Vanderpool D, Wolinski H, Aime MC, Schneider K, Stabentheiner E, Toome-Heller M, Thor G. Basidiomycete yeasts in the cortex of ascomycete macrolichens. Science 2016; 353: 488-492
  • 15 Stocker-Wörgötter E. Metabolic diversity of lichen-forming ascomycetous fungi: culturing, polyketide and shikimate metabolite production, and PKS genes. Nat Prod Rep 2008; 25: 188-200
  • 16 Olivier-Jimenez D, Chollet-Krugler M, Rondeau D, Beniddir MA, Ferron S, Delhaye T, Allard PM, Wolfender JL, Sipman HJ, Lücking R. A database of high-resolution MS/MS spectra for lichen metabolites. Sci Data 2019; 6: 1-11
  • 17 Calcott MJ, Ackerley DF, Knight A, Keyzers RA, Owen JG. Secondary metabolism in the lichen symbiosis. Chem Soc Rev 2018; 47: 1730-1760
  • 18 Duong TH, Chavasiri W, Boustie J. New meta-depsidones and diphenyl ethers from the lichen Parmotrema tsavoense (Krog & Swinscow) Krog & Swinscow, Parmeliaceae. Tetrahedron 2015; 71: 9684-9691
  • 19 Duong TH, Ha XP, Chavasiri W, Beniddir MA, Genta-Jouve G, Boustie J, Chollet-Krugler M, Ferron S, Nguyen HH, Yamin BM. Sanctis A–C: three racemic procyanidin analogues from the lichen Parmotrema sancti-angelii . Eur J Org Chem 2018; 2018: 2247-2253
  • 20 Duong TH, Beniddir MA, Genta-Jouve G, Aree T, Chollet-Krugler M, Boustie J, Ferron S, Sauvager A, Nguyen HH, Chavasiri W. Tsavoenones A–C: unprecedented polyketides with a 1,7-dioxadispiro [4.0. 4.4] tetradecane core from the lichen Parmotrema tsavoense . Org Biomol Chem 2018; 16: 5913-5919
  • 21 Schumm F, Aptroot A. A microscopical Atlas of some Tropical Lichens from SE-Asia (Thailand, Cambodia, Philippines, Vietnam). Norderstedt: BoD-Books on Demand; 2012
  • 22 Honda NK, Pavan FR, Coelho RG, de Andrade Leite SR, Micheletti AC, Lopes TIB, Misutsu MY, Beatriz A, Brum RL, Leite CQF. Antimycobacterial activity of lichen substances. Phytomedicine 2010; 17: 328-332
  • 23 Eifler-Lima VL, Sperry A, Sinbandhit S, Boustie J, Tomasi S, Schenkel E. NMR spectral data of salazinic acid isolated from some species of Parmotrema . Magn Reson Chem 2000; 38: 472-474
  • 24 Elix JA, Engkaninan U. The structure of galbinic acid. A depsidone from the lichen Usnea undulata . Aust J Chem 1975; 28: 1793-1797
  • 25 Huneck S, Yoshimura I. Identification of Lichen Substances. Berlin-Heidelberg: Springer; 1996
  • 26 Elix JA, Wardlaw JH. The structure of chalybaeizanic acid and quaesitic acid, two new lichen depsidones related to salazinic acid. Aust J Chem 1999; 52: 713-716
  • 27 König GM, Wright AD. 1H and 13C-NMR and biological activity investigations of four lichen-derived compounds. Phytochem Anal 1999; 10: 279-284
  • 28 Carvalho MG, de Carvalho GJ, Braz-Filho R. Chemical constituents from Ouratea floribunda: complete 1H and 13C NMR assignments of atranorin and its new acetyl derivative. J Brazil Chem Soc 2000; 11: 143-147
  • 29 Donnelly DM, Coveney DJ, Fukuda N, Polonsky J. New sesquiterpene aryl esters from Armillaria mellea . J Nat Prod 1986; 49: 111-116
  • 30 Oettl SK, Hubert J, Nuzillard JM, Stuppner H, Renault JH, Rollinger JM. Dereplication of depsides from the lichen Pseudevernia furfuracea by centrifugal partition chromatography combined to 13C nuclear magnetic resonance pattern recognition. Anal Chim Acta 2014; 846: 60-67
  • 31 Nguyen DM, Do LM, Nguyen VT, Chavasiri W, Mortier J, Nguyen PP. Phenolic compounds from the lichen Lobaria orientalis . J Nat Prod 2017; 80: 261-268
  • 32 Millot M, Tomasi S, Studzinska E, Rouaud I, Boustie J. Cytotoxic constituents of the lichen Diploicia canescens . J Nat Prod 2009; 72: 2177-2180
  • 33 Lohézic-Le Dévéhat F, Tomasi S, Elix JA, Bernard A, Rouaud I, Uriac P, Boustie J. Stictic acid derivatives from the lichen Usnea articulata and their antioxidant activities. J Nat Prod 2007; 70: 1218-1220
  • 34 Ismed F, Lohézic-Le Dévéhat F, Delalande O, Sinbandhit S, Bakhtiar A, Boustie J. Lobarin from the Sumatran lichen, Stereocaulon halei . Fitoterapia 2012; 83: 1693-1698
  • 35 Elyashberg M. Identification and structure elucidation by NMR spectroscopy. TrAC Trend Anal Chem 2015; 69: 88-97
  • 36 Duong TH, Beniddir MA, Boustie J, Nguyen KPP, Chavasiri W, Bernadat G, Le Pogam P. DP4-Assisted structure elucidation of isodemethylchodatin, a new norlichexanthone derivative meager in H-atoms, from the lichen Parmotrema tsavoense . Molecules 2019; 24: 1527
  • 37 Adeboya MO, Edwards RL, Lassøe T, Maitland DJ, Shields L, Whalley AJS. Metabolites of the higher fungi. Part 29. Maldoxin, maldoxone, dihydromaldoxin, isodihydromaldoxin and dechlorodihydromaldoxin. A spirocyclohexadienone, a depsidone and three diphenyl ethers: keys in the depsidone biosynthetic pathway from a member of the fungus genus Xylaria . J Chem Soc Perkin Transact 1 1996; 1419-1425
  • 38 Xu X, Liu L, Zhang F, Wang W, Li J, Guo L, Che Y, Liu G. Identification of the first diphenyl ether gene cluster for pestheic acid biosynthesis in plant endophyte Pestalotiopsis fici . Chembiochem 2014; 15: 284-292
  • 39 Sala T, Sargent MV, Elix JA. Depsidone synthesis. Part 15. New metabolites of the lichen Buellia canescens (Dicks.) De Not: novel phthalide catabolites of depsidones. J Chem Soc, Perkin Transact 1 1981; 849-854
  • 40 Wang C, Guo L, Hao J, Wang L, Zhu W. α-Glucosidase inhibitors from the marine-derived fungus Aspergillus flavipes HN4-13. J Nat Prod 2016; 79: 2977-2981
  • 41 Liu Y, Yang Q, Xia G, Huang H, Li H, Ma L, Lu Y, He L, Xia X, She Z. Polyketides with α-glucosidase inhibitory activity from a mangrove endophytic fungus, Penicillium sp. HN29-3B1. J Nat Prod 2015; 78: 1816-1822
  • 42 Duong TH, Hang TXH, Le Pogam P, Tran TN, Mac DH, Dinh MH, Sichaem J. α-Glucosidase inhibitory depsidones from the lichen Parmotrema tsavoense · Planta Med in press.
  • 43 Nguyen VB, Nguyen AD, Wang SL. Utilization of fishery processing by-product squid pens for α-glucosidase inhibitors production by Paenibacillus sp. Mar Drugs 2017; 15: 274