Laryngorhinootologie 2021; 100(01): 38-45
DOI: 10.1055/a-1177-1371
Originalarbeit

Die Lokalisationsfähigkeit schwerhöriger Schulkinder mit und ohne Hörgeräte

Auditory localisation in hearing impaired schoolchildren with and without hearing aids
Sylvia Meuret
1   Sektion Phoniatrie und Audiologie, Klinik und Poliklinik für Hals-, Nasen- und Ohrenheilkunde, Universitätsklinikum Leipzig, Germany
,
Thomas Berger
2   Klinik und Poliklinik für Hals-, Nasen- und Ohrenheilkunde, Universitätsklinikum Leipzig AöR, Leipzig, Germany
,
Michael Fuchs
1   Sektion Phoniatrie und Audiologie, Klinik und Poliklinik für Hals-, Nasen- und Ohrenheilkunde, Universitätsklinikum Leipzig, Germany
,
Alexandra Annemarie Ludwig
3   Institut für Biologie, Universität Leipzig Fakultät für Lebenswissenschaften, Leipzig, Germany
› Author Affiliations

Zusammenfassung

Hintergrund Die Richtungslokalisation ist eine Teilleistung der zentralen auditiven Verarbeitung. Es wurde der Frage nachgegangen, ob das Tragen von Hörgeräten die Lokalisationsfähigkeit von nichtsprachlichen Stimuli bei schwerhörigen Schulkindern unterstützt.

Patienten und Methoden 20 Kinder (7–17 Jahre) mit einer beidseitigen, symmetrischen, mittelgradigen peripheren Schallempfindungsschwerhörigkeit (WHO-Grad 2) wurden im Freifeld mit und ohne Hinter-dem-Ohr-Hörgeräte (HG) untersucht. Alle Probanden trugen HG mit individuellen Passstücken. Die Aufgabe war, die Position überschwelliger akustischer Signale im Freifeld mithilfe eines Laserpointers innerhalb einer halbkreisförmigen Anordnung von 45 Lautsprechern anzuzeigen. Es wurden jeweils tief- und hochfrequente Stimuli getestet, um den Einfluss von interauralen Zeit- und Pegelunterschieden auf die Verarbeitung unterscheiden zu können. Die Ergebnisse wurden mit denen normalhörender Kinder verglichen.

Ergebnisse In unserem Testaufbau gab es keinen signifikanten Unterschied zwischen der Messung mit und ohne HG, weder für die unterschiedlichen Frequenzbänder noch für die unterschiedlichen getesteten Positionen. Die absolute Abweichung der schwerhörigen Kinder war um 3–4° frontal und 5–11° lateral schlechter als die hörgesunder Kinder. Wie auch normalhörende Schulkinder konnten die schwerhörigen Schulkinder frontale Positionen signifikant besser lokalisieren als laterale. Ebenso zeigte sich keine Altersentwicklung der Lokalisationsfähigkeit.

Schlussfolgerung In unserem Testaufbau konnten HG die schlechtere Lokalisationsfähigkeit schwerhöriger Kinder nicht ausgleichen.

Abstract

Objective Auditory localisation is part of central auditory processing. The study examined the impact of hearing aids on the auditory localisation ability of non-linguistic stimuli in hearing impaired schoolchildren.

Patients and methods Above threshold acoustic signals were presented to 20 children (7–17 years) in a free field condition with 45 loudspeakers placed on a semicircular array. All participants had a bilaterally symmetric moderate sensorineural hearing loss (WHO grade 2) and used behind the ear style (BTE) hearing aids with conventional earmolds. The children had to indicate the position of the signal by a laser pointer. Both high- and low-frequency noise bursts were employed in the tests to separately address spatial auditory processing based on interaural time differences and interaural intensity differences. The examination was performed with and without BTE hearing aids.

Results There was no significant difference between results in the aided and the unaided condition: neither for the different frequency bands nor for the signal positions. The auditory localisation of the hearing impaired children was reduced by 3°–4° for frontal and 5°–11° for lateral positions compared to normal-hearing children. There was no age-relation.

Conclusions In our experimental setting, BTE hearing aids could not compensate the impaired auditory localisation ability of children with sensorineural hearing loss.



Publication History

Received: 09 April 2020

Accepted: 12 May 2020

Article published online:
05 June 2020

© 2020. Thieme. All rights reserved.

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • Literatur

  • 1 Moore JK. Maturation of human auditory cortex: implications for speech perception. Ann Otol Rhinol Laryngol Suppl 2002; 189: 7-10
  • 2 Moore JK, Linthicum Jr FH. The human auditory system: a timeline of development. Int J Audiol 2007; 46 (09) 460-478 . Review
  • 3 Sanes DH, Bao S. Tuning up the developing auditory CNS. Curr Opin Neurobiol 2009; 19 (02) 188-199
  • 4 Kühnle S, Ludwig AA, Meuret S. et al. Development of auditory localization accuracy and auditory spatial discrimination in children and adolescents. Audiol Neurootol 2013; 18 (01) 48-62
  • 5 Van Deun L, Van Wieringen A, Van den Bogaert T. et al. Sound localization, sound lateralization and binaural masking level differences in young children with normal hearing. Ear Hear 2009; 30 (02) 178-190
  • 6 Recanzone G, Makhamra S, Guard D. Comparison of relative and absolute sound localization ability in humans. J Acoust Soc Am 1998; 103: 1085-1097
  • 7 Middlebrooks J, Xu L, Eddins A. et al. Codes for sound-source location in nontonotopic auditory cortex. J Neurophysiol 1998; 80 (02) 863-881
  • 8 Ludwig AA, Zeug M, Schönwiesner M. et al. Auditory localization accuracy and auditory spatial discrimination in children with auditory processing disorders. Hear Res 2019; 377: 282-291
  • 9 Paulus E. Die richtunggebenden Merkmale des räumlichen Hörens. Laryngo-Rhino-Otol 2003; 82: 240-248
  • 10 Yost WA, Dye Jr RH. Discrimination of interaural differences of level as a function of frequency. J Acoust Soc Am 1988; 83 (05) 1846-1851
  • 11 Van den Bogaert T, Klasen TJ, Moonen M. et al. Horizontal localization with bilateral hearing aids: without is better than with. J Acoust Soc Am 2006; 119 (01) 515-526
  • 12 Johnson JA, Xu J, Cox RM. Impact of Hearing Aid Technology on Outcomes in Daily Life III: Localization. Ear Hear 2017; 38 (06) 746-759
  • 13 Keidser G, O’Brien A, Hain JU. et al. The effect of frequency-dependent microphone directionality on horizontal localization performance in hearing-aid users. Int J Audiol 2009; 48 (11) 789-803
  • 14 Denk F, Ewert SD, Kollmeier B. On the limitations of sound localization with hearing devices. J Acoust Soc Am 2019; 146 (03) 1732
  • 15 Sebkova J, Bamford J. Evaluation of binaural hearing aids in children using localization and speech intelligibility tasks. Br J Audiol 1981; 15 (02) 125-132
  • 16 Litovsky RY, Johnstone PM, Godar SP. Benefits of bilateral cochlear implants and/or hearing aids in children. Int J Audiol 2006; 45 (Suppl. 01) S78-S91
  • 17 Van Deun L, Van Wieringen A, Wouters J. Spatial speech perception benefits in young children with normal hearing and cochlear implants. Ear Hear 2010; 31 (05) 702-713
  • 18 Godar SP, Litovsky RY. Experience with bilateral cochlear implants improves sound localization acuity in children. Otol Neurotol 2010; 31 (08) 1287-1292
  • 19 Grieco-Calub TM, Litovsky RY. Sound localization skills in children who use bilateral cochlear implants and in children with normal acoustic hearing. Ear Hear 2010; 31 (05) 645-656
  • 20 Johansson M, Asp F, Berninger E. Children With Congenital Unilateral Sensorineural Hearing Loss: Effects of Late Hearing Aid Amplification – A Pilot Study. Ear Hear 2020; 41 (01) 55-66
  • 21 Johnstone PM, Yeager KR, Pomeroy ML. et al. Open-Fit Domes and Children with Bilateral High-Frequency Sensorineural Hearing Loss: Benefits and Outcomes. J Am Acad Audiol 2018; 29 (04) 348-356
  • 22 Meuret S, Ludwig AA, Predel D. et al. Localization and Spatial Discrimination in Children and Adolescents with Moderate Sensorineural Hearing Loss Tested without Their Hearing Aids. Audiol Neurootol 2017; 22 (06) 326-342
  • 23 Akeroyd MA. An overview of the major phenomena of the localization of sound sources by normal-hearing, hearing-impaired, and aided listeners. Trends Hear 2014; 9: 18
  • 24 Morrongiello BA, Rocca PT. Infants’ localization of sounds in the horizontal plane: effects of auditory and visual cues. Child Dev 1987; 58 (04) 918-927
  • 25 Otte RJ, Agterberg MJ, Van Wanrooij MM. et al. Age-related hearing loss and ear morphology affect vertical but not horizontal sound-localization performance. J Assoc Res Otolaryngol 2013; 14 (02) 261-273
  • 26 Macaulay EJ, Hartmann WM, Rakerd BJ. The acoustical bright spot and mislocalization of tones by human listeners. Acoust Soc Am 2010; 127 (03) 1440-1449
  • 27 Hawkins DB, Wightman FL. Interaural time discrimination ability of listeners with sensorineural hearing loss. Audiology 1980; 19 (06) 495-507
  • 28 Leao RN, Berntson A, Forsythe ID. et al. Reduced low-voltage activated K+ conductances and enhanced central excitability in a congenitally deaf (dn/dn) mouse. J Physiol 2004; 559 (01) 25-33
  • 29 Kan A, Litovsky RY. Binaural hearing with electrical stimulation. Ear Hear 2015; 36 (03) e62-e68
  • 30 Nodal FR, Bajo VM, King AJ. Plasticity of spatial hearing: behavioural effects of cortical inactivation. J Physiol 2012; 590 (16) 3965-3986
  • 31 Nodal FR, Kacelnik O, Bajo VM. et al. Lesions of the auditory cortex impair azimuthal sound localization and its recalibration in ferrets. J Neurophysiol 2010; 103 (03) 1209-1225
  • 32 Kacelnik O, Nodal FR, Parsons CH. et al. Training-induced plasticity of auditory localization in adult mammals. PLoS Biol 2006; 4 (04) e71