Der Klinikarzt 2020; 49(05): 216-222
DOI: 10.1055/a-1153-7747
Schwerpunkt
© Georg Thieme Verlag Stuttgart · New York

Extrakorporale Therapiestrategien in der Sepsis

Eine Übersicht verschiedener Verfahren und deren Evidenz
Sascha David
1   Internistische Intensivmedizin/Zentrum Innere Medizin, Medizinische Hochschule Hannover, Hannover
› Author Affiliations
Further Information

Publication History

Publication Date:
12 May 2020 (online)

ZUSAMMENFASSUNG

Sepsis ist eine lebensbedrohliche Organdysfunktion, hervorgerufen durch eine pathologische Wirtsantwort auf eine Infektion. Eine spezifische Therapie hiergegen wäre wünschenswert, konnte aber bisher nicht etabliert werden. Die Blockade einzelner Komponenten des Immunsystems (z. B. TNF, TLR4) lieferte zwar überzeugende Resultate in der präklinischen Forschung, scheiterte jedoch in kontrollierten klinischen Studien. Daher ist eine nicht selektive Elimination verschiedener zirkulierender Faktoren in den letzten Jahren in den Fokus wissenschaftlichen Interesses gerückt. In dieser Übersicht werden unterschiedliche extrakorporale Verfahren und deren Evidenz zur Therapie der Sepsis vorgestellt. Der therapeutische Plasmaaustausch nimmt in gewisser Weise eine Sonderstellung ein, da neben der Elimination schädigender Substanzen gleichzeitig durch die Sepsis verbrauchte protektive Faktoren ersetzt werden können. Zusammenfassend handelt es sich um innovative Apparaturen auf dem Boden eines überzeugenden theoretischen Konzeptes mit teilweise guten Effekten in kleinen Pilotstudien. Randomisiert kontrollierte Studien sind jedoch rar, sodass belastbare Daten bis dato leider fehlen.

 
  • Literatur

  • 1 Singer M, Deutschman CS, Seymour CW. et al The Third International Consensus Definitions for Sepsis and Septic Shock (Sepsis-3). JAMA 2016; 315: 801-810
  • 2 Aird WC. The role of the endothelium in severe sepsis and multiple organ dysfunction syndrome. Blood 2003; 101: 3765-3777
  • 3 Lee WL, Slutsky AS. Sepsis and endothelial permeability. New Engl J Med 2010; 363: 689-691
  • 4 Ranieri VM, Thompson BT, Barie PS, Dhainaut J-F, Douglas IS, Finfer S, Gårdlund B, Marshall JC, Rhodes A, Artigas A, Payen D, Tenhunen J, Al-Khalidi HR, Thompson V, Janes J, Macias WL, Vangerow B, Williams MD. PROWESS-SHOCK Study Group. Drotrecogin alfa (activated) in adults with septic shock. The New England Journal of Medicine 2012; 366: 2055-2064
  • 5 Opal SM, Laterre P-F, Francois B. et al ACCESS Study Group. Effect of eritoran, an antagonist of MD2-TLR4, on mortality in patients with severe sepsis: the ACCESS randomized trial. JAMA 2013; 309: 1154-1162
  • 6 Abraham E, Anzueto A, Gutierrez G. et al Double-blind randomised controlled trial of monoclonal antibody to human tumour necrosis factor in treatment of septic shock. NORASEPT II Study Group. Lancet 1998; 351: 929-933
  • 7 Hotchkiss RS, Opal S. Immunotherapy for Sepsis – A New Approach against an Ancient Foe. N Engl J Med 2010; 363: 8789
  • 8 Ronco C, Bellomo R, Homel P. et al Effects of different doses in continuous veno-venous haemofiltration on outcomes of acute renal failure: a prospective randomised trial. Lancet 2000; 356: 26-30
  • 9 VA/NIH Acute Renal Failure Trial Network Palevsky PM, Zhang JH, O’Connor TZ. et al Intensity of renal support in critically ill patients with acute kidney injury. New Engl J Med 2008; 359: 7-20
  • 10 Jun M, Heerspink HJL, Ninomiya T. et al Intensities of renal replacement therapy in acute kidney injury: a systematic review and meta-analysis. Clin J Am Soc Nephrol 2010; 5: 956-963
  • 11 Boussekey N, Chiche A, Faure K. et al A pilot randomized study comparing high and low volume hemofiltration on vasopressor use in septic shock. Intensive Care Med 2008; 34: 1646-1653
  • 12 Joannes-Boyau O, Honoré PM, Perez P. et al High-volume versus standard-volume haemofiltration for septic shock patients with acute kidney injury (IVOIRE study): a multicentre randomized controlled trial. Intensive Care Med 2013; 39: 1535-1546
  • 13 Borthwick EM, Hill CJ, Rabindranath KS. et al High-volume haemofiltration for sepsis in adults. Cochrane Database Syst Rev 2017; 1: CD008075
  • 14 Kielstein JT, David S. Pro: Renal replacement trauma or Paracelsus 2.0. Nephrol Dial Transplant 2013; 28: 2728-2731 discussion 2731–2733
  • 15 Villa G, Chelazzi C, Morettini E. et al Organ dysfunction during continuous veno-venous high cut-off hemodialysis in patients with septic acute kidney injury: A prospective observational study. PLoS ONE 2017; 12: e0172039
  • 16 Cruz DN, Antonelli M, Fumagalli R. et al Early use of polymyxin B hemoperfusion in abdominal septic shock: the EUPHAS randomized controlled trial. JAMA 2009; 301: 2445-2452
  • 17 Payen DM, Guilhot J, Launey Y. et al ABDOMIX Group. Early use of polymyxin B hemoperfusion in patients with septic shock due to peritonitis: a multicenter randomized control trial. Intensive Care Med 2015; 41: 975-984
  • 18 Dellinger RP, Bagshaw SM, Antonelli M. et al EUPHRATES Trial Investigators. Effect of Targeted Polymyxin B Hemoperfusion on 28-Day Mortality in Patients With Septic Shock and Elevated Endotoxin Level: The EUPHRATES Randomized Clinical Trial. JAMA 2018; 320: 1455-1463
  • 19 Klein DJ, Foster D, Walker PM. et al Polymyxin B hemoperfusion in endotoxemic septic shock patients without extreme endotoxemia: a post hoc analysis of the EUPHRATES trial. Intensive Care Med 2018; 44: 2205-2212
  • 20 Poli EC, Rimmelé T, Schneider AG. Hemoadsorption with CytoSorb® . Intensive Care Med 2019; 45: 236-239
  • 21 Kellum JA, Song M, Venkataraman R. Hemoadsorption removes tumor necrosis factor, interleukin-6, and interleukin-10, reduces nuclear factor-kappaB DNA binding, and improves short-term survival in lethal endotoxemia. Critical Care Medicine 2004; 32: 801-805
  • 22 Gruda MC, Ruggeberg K-G, O’Sullivan P. et al Broad adsorption of sepsis-related PAMP and DAMP molecules, mycotoxins, and cytokines from whole blood using CytoSorb® sorbent porous polymer beads. PLoS ONE 2018; 13: e0191676
  • 23 Kogelmann K, Jarczak D, Scheller M, Drüner M. Hemoadsorption by CytoSorb in septic patients: a case series. Crit Care 2017; 21: 74
  • 24 David S, Thamm K, Schmidt BMW, Falk CS, Kielstein JT. Effect of extracorporeal cytokine removal on vascular barrier function in a septic shock patient. J Intensive Care 2017; 5: 1-5
  • 25 Friesecke S, Stecher S-S, Gross S. et al Extracorporeal cytokine elimination as rescue therapy in refractory septic shock: a prospective single-center study. J Artif Organs 2017; 20: 252-259
  • 26 Schädler D, Pausch C, Heise D. et al The effect of a novel extracorporeal cytokine hemoadsorption device on IL-6 elimination in septic patients: A randomized controlled trial. PLoS ONE 2017; 12: e0187015
  • 27 Hawchar F, László I, Öveges N. et al Extracorporeal cytokine adsorption in septic shock: A proof of concept randomized, controlled pilot study. J Crit Care 2019; 49: 172-178
  • 28 Brouwer WP, Duran S, Kuijper M, Ince C. Hemoadsorption with CytoSorb shows a decreased observed versus expected 28-day all-cause mortality in ICU patients with septic shock: a propensity-score-weighted retrospective study. Crit Care 2019; 23: 317
  • 29 David S, Stahl K. To remove and replace-a role for plasma exchange in counterbalancing the host response in sepsis. Crit Care 2019; 23: 14
  • 30 Busund R, Koukline V, Utrobin U, Nedashkovsky E. Plasmapheresis in severe sepsis and septic shock: a prospective, randomised, controlled trial. Intensive Care Med 2002; 28: 1434-1439
  • 31 Rimmer E, Houston BL, Kumar A, Abou-Setta AM. et al The efficacy and safety of plasma exchange in patients with sepsis and septic shock: a systematic review and meta-analysis. Crit Care 2014; 18: 699
  • 32 Knaup H, Stahl K, Schmidt BMW. et al Early therapeutic plasma exchange in septic shock: a prospective open-label nonrandomized pilot study focusing on safety, hemodynamics, vascular barrier function, and biologic markers. Crit Care 2018; 22: 285