Osteologie 2020; 29(02): 111-122
DOI: 10.1055/a-1112-7925
Originalarbeit

Interaktion zwischen Muskel und Knochen – ein Wechselspiel zwischen Physik und Biologie

Interaction between muscle and bone – an interplay between physics and biology
Franz Jakob
1   Bernhard-Heine-Centrum für Bewegungsforschung, Orthopädische Klinik König-Ludwig-Haus, Würzburg
,
Sigrid Müller-Deubert
1   Bernhard-Heine-Centrum für Bewegungsforschung, Orthopädische Klinik König-Ludwig-Haus, Würzburg
,
Regina Ebert
1   Bernhard-Heine-Centrum für Bewegungsforschung, Orthopädische Klinik König-Ludwig-Haus, Würzburg
,
Klaus Engelke
2   Institut für Medizinische Physik, Universität Erlangen, Erlangen
,
Dieter Felsenberg
3   Privatpraxis für Muskel- und Knochenkrankheiten, Berlin
,
Maximilian Rudert
1   Bernhard-Heine-Centrum für Bewegungsforschung, Orthopädische Klinik König-Ludwig-Haus, Würzburg
,
Marietta Herrmann
1   Bernhard-Heine-Centrum für Bewegungsforschung, Orthopädische Klinik König-Ludwig-Haus, Würzburg
› Author Affiliations

Zusammenfassung

Die balancierte und reziproke adaptive Interaktion zwischen Muskel und Knochen ist essenziell für die Fortbewegung von Organismen und die Erhaltung ihrer stabilen Form unter Vermeidung von Frakturen und Verletzungen. Muskeln erzeugen durch Kontraktion physikalische Kräfte, die auf die Muskulatur selbst und auf das stabilisierende Skelett wirken. Das Kraftniveau wird von der Gravitation und der Masse des eigenen Organismus bestimmt. Steigerung der Kräfte und Wiederholung der Reize haben anabole Wirkung, Immobilisation und Simulation von Mikro-Gravitation führen zum Verlust von Muskel und Knochen. Die Einwirkung physikalischer Kräfte auf Zellen wird in biochemische Signale umgesetzt und generiert biologische Effekte. Die molekularen Mechanismen des Mechanosensing und der Mechanotransduktion sind in den letzten 2–3 Dekaden sehr intensiv erforscht worden. Dehnung, Kompression und Flüssigkeitsströmung verursachen über Verbindungen durch Adhäsionsmoleküle an die Extrazellulärmatrix und zwischen den Zellen sowie über das Primäre Zilium eine „Second-messenger“-Aktivierung wie Kalzium-Einstrom, cAMP- und cGMP-Produktion und Aktivierung von Rezeptoren und Kinasen. Im Gefolge werden Transkriptionsfaktoren nukleotrop, die dann an DNA-responsive Steuerelemente binden und Transkription modulieren. Die Änderungen des Proteoms der Zelle führen zur vermehrten Bildung von Strukturproteinen zur Verstärkung des Zytoskeletts und der Zell-Zell-Adhäsion, sodass sich die Steifigkeit und die Rückstellkraft der Zelle und des Gewebes auf ein höheres Kraftniveau einstellen, ohne durch Ruptur oder Fraktur Schaden zu nehmen. Neben der physikalischen Interaktion durch die Kräfte des Muskels werden auch über Sekretionsprodukte von Muskel und Knochen Informationen ausgetauscht. Die Sekretionsprodukte initiieren und regulieren mit großen Überlappungen in ihrer Funktion die interaktive Adaptation und Regeneration in beiden Geweben. Neben der tonischen Produktion von Proteinen mit einer sekretorischen Sequenz können beide Gewebe auch auf mechanische Reize hin Vesikel abgeben, die als Fracht präsynthetisierte Rezeptoren, Wachstums- und Differenzierungsfaktoren und orchestrierende miRNAs transportieren können. Da weder Knochen noch Muskel echte endokrine Vesikel bilden können, werden Exosomen in die Zirkulation abgegeben. Ein auslösender Reiz dafür ist ein Kalzium-Einstrom als Folge von mechanischer Stimulation/Trainingsaktivität. Mit zunehmendem Wissen ergibt sich hier ein Bild der unerwartet intensiven Auswirkung mechanischer Kräfte auf die Zellbiologie und Biochemie von Geweben. Wir beginnen gerade, diese Auswirkungen in der Physiologie zu verstehen, während wir im Verständnis der Störungen einer gesunden Adaptation, z. B. im Sinne von Überlastung oder Trainingsresistenz, besonders bei chronischen Erkrankungen wie Osteoporose und Arthrose noch sehr am Anfang stehen.

Abstract

Balanced and reciprocal adaptive interaction between muscle and bone is essential for locomotion and for the maintenance of integrity of the organism in order to avoid ruptures and fractures. Contracting muscles produce physical forces that influence both the musculature itself and the stabilizing skeleton. Gravity and body mass define the power of forces. Escalation of power and repetitions of physical stimuli lead to anabolic effects in both tissues while immobilization, disuse and simulation of micro-gravity produce muscle and bone loss. The impact of physical strain on cells is translated into biochemical signals and generates biological effects. During the last 2–3 decades, the molecular mechanisms of mechanosensing and mechanotransduction have been intensely explored. Stretching, compression and fluid flow respectively set strain on adhesion molecules between cells and the extracellular matrix as well as on cell-cell interactions, thereby causing cell deformations and activation of calcium influx, cAMP and cGMP production and activation of kinases. In consequence, transcription factors acquire nucleotropy, bind to DNA-response elements and modulate transcription. Consecutive changes in the proteome result in enhanced production of structural proteins to fortify the architecture of the cytoskeleton and of cell adhesion. This enhances the stiffness and viscoelasticity of both the cell and the tissue composition in order to adapt to the higher level of power without injury. Besides the mere physical interaction through muscle forces both tissues also exchange information via secretory products of both muscle and bone. These products initiate and regulate interactive adaptation and regeneration with a great deal of functional overlap between tissues. Besides a tonic secretion of polypeptides with secretory domains, both tissues are also capable of secreting vesicles upon exercise that transport pre-synthesized receptors, growth and differentiation factors and miRNAs as a cargo. Since neither of both tissues is capable of producing true endocrine vesicles, they deliver exosomes into the circulation. One adequate stimulus for exosome delivery is calcium influx upon mechanical strain or exercise, respectively. With our steadily increasing knowledge, the evolving picture is an unexpectedly strong influence of mechanical forces on cellular biochemistry and cell biology of tissues. While we just begin to understand the physiology of mechanosensing and mechanotransduction as perfect tools for adaptation to environmental needs, our knowledge about the impact of alterations in this field, e. g. overload and exercise resistance, on chronic diseases like osteoporosis and osteoarthritis is still in its infancy.



Publication History

Received: 04 November 2019

Accepted: 19 November 2019

Article published online:
02 June 2020

© Georg Thieme Verlag KG
Stuttgart · New York

 
  • Literatur

  • 1 Gao Y, Arfat Y, Wang H. et al. Muscle Atrophy Induced by Mechanical Unloading: Mechanisms and Potential Countermeasures. Front Physiol 2018; 9: 235
  • 2 Rittweger J, Frost HM, Schiessl H. et al. Muscle atrophy and bone loss after 90 days’ bed rest and the effects of flywheel resistive exercise and pamidronate: results from the LTBR study. Bone 2005; 36: 1019-1029
  • 3 Felsenthal N, Zelzer E. Mechanical regulation of musculoskeletal system development. Development 2017; 144: 4271-4283
  • 4 Arvind V, Huang AH. Mechanobiology of limb musculoskeletal development. Ann N Y Acad Sci 2017; 1409: 18-32
  • 5 Donnaloja F, Jacchetti E, Soncini M. et al. Mechanosensing at the Nuclear Envelope by Nuclear Pore Complex Stretch Activation and Its Effect in Physiology and Pathology. Front Physiol 2019; 10: 896
  • 6 Jin J, Bakker AD, Wu G. et al. Physicochemical Niche Conditions and Mechanosensing by Osteocytes and Myocytes. Curr Osteoporos Rep. 2019 . doi:10.1007/s11914-019-00522-0
  • 7 Maurer M, Lammerding J. The Driving Force: Nuclear Mechanotransduction in Cellular Function, Fate, and Disease. Annu Rev Biomed Eng 2019; 21: 443-468
  • 8 Song Y, Soto J, Chen B. et al. Cell engineering: Biophysical regulation of the nucleus. Biomaterials 2020; 234: 119743
  • 9 Mohammed D, Versaevel M, Bruyere C. et al. Innovative Tools for Mechanobiology: Unraveling Outside-In and Inside-Out Mechanotransduction. Front Bioeng Biotechnol 2019; 7: 162
  • 10 Coulombe JC, Senwar B, Ferguson VL. Spaceflight-Induced Bone Tissue Changes that Affect Bone Quality and Increase Fracture Risk. Curr Osteoporos Rep. 2020 10.1007/s11914-019-00540-y.
  • 11 Winnard A, Scott J, Waters N. et al. Effect of Time on Human Muscle Outcomes During Simulated Microgravity Exposure Without Countermeasures-Systematic Review. Front Physiol 2019; 10: 1046
  • 12 Reid IR. Targeting Sclerostin in Postmenopausal Osteoporosis: Focus on Romosozumab and Blosozumab. BioDrugs 2017; 31: 289-297
  • 13 Murphy PZ, Iranikhah M, Deas CM. et al. Fracture Risk Following Discontinuation of Teriparatide: A Review of the Literature. Consult Pharm 2018; 33: 365-375
  • 14 Alfieri R, Vassalli M, Viti F. Flow-induced mechanotransduction in skeletal cells. Biophys Rev 2019 DOI: 10.1007/s12551-019-00596-1. 10.1007/s12551-019-00596-1.
  • 15 Ferreira R, Fukui H, Chow R. et al. The cilium as a force sensor-myth versus reality. J Cell Sci 2019; 132 . doi:10.1242/jcs.213496
  • 16 Moore ER, Jacobs CR. The primary cilium as a signaling nexus for growth plate function and subsequent skeletal development. J Orthop Res 2018; 36: 533-545
  • 17 Morrell AE, Brown GN, Robinson ST. et al. Mechanically induced Ca(2+) oscillations in osteocytes release extracellular vesicles and enhance bone formation. Bone Res 2018; 6: 6
  • 18 Amanatullah DF, Lu J, Hecht J. et al. Identification of a 3Kbp mechanoresponsive promoter region in the human cartilage oligomeric matrix protein gene. Tissue Eng Part A 2012; 18: 1882-1889
  • 19 Seefried L, Muller-Deubert S, Krug M. et al. Dissection of mechanoresponse elements in promoter sites of the mechanoresponsive CYR61 gene. Exp Cell Res 2017; 354: 103-111
  • 20 Muller-Deubert S, Seefried L, Krug M. et al. Epidermal growth factor as a mechanosensitizer in human bone marrow stromal cells. Stem Cell Res 2017; 24: 69-76
  • 21 Sun Z, Costell M, Fassler R. Integrin activation by talin, kindlin and mechanical forces. Nat Cell Biol 2019; 21: 25-31
  • 22 Sun Z, Guo SS, Fassler R. Integrin-mediated mechanotransduction. J Cell Biol 2016; 215: 445-456
  • 23 Gough RE, Goult BT. The tale of two talins – two isoforms to fine-tune integrin signalling. FEBS Lett 2018; 592: 2108-2125
  • 24 Argentati C, Morena F, Tortorella I. et al. Insight into Mechanobiology: How Stem Cells Feel Mechanical Forces and Orchestrate Biological Functions. Int J Mol Sci 2019; 20 . doi:10.3390/ijms20215337
  • 25 Romero S, Le Clainche C, Gautreau AM. Actin polymerization downstream of integrins: signaling pathways and mechanotransduction. Biochem J 2020; 477: 1-21
  • 26 Cantini M, Donnelly H, Dalby MJ. et al. The Plot Thickens: The Emerging Role of Matrix Viscosity in Cell Mechanotransduction. Adv Healthc Mater 2019; e1901259 . doi:10.1002/adhm.201901259
  • 27 Kummer D, Ebnet K. Junctional Adhesion Molecules (JAMs): The JAM-Integrin Connection. Cells 2018; 7 . doi:10.3390/cells7040025
  • 28 Trovato E, Di Felice V, Barone R. Extracellular Vesicles: Delivery Vehicles of Myokines. Front Physiol 2019; 10: 522
  • 29 Pedersen BK, Febbraio MA. Muscle as an endocrine organ: focus on muscle-derived interleukin-6. Physiol Rev 2008; 88: 1379-1406
  • 30 Han Y, You X, Xing W. et al. Paracrine and endocrine actions of bone-the functions of secretory proteins from osteoblasts, osteocytes, and osteoclasts. Bone Res 2018; 6: 16
  • 31 Millar SA, Anderson SI, O’Sullivan SE. Osteokines and the vasculature: a review of the in vitro effects of osteocalcin, fibroblast growth factor-23 and lipocalin-2. PeerJ 2019; 7: e7139
  • 32 Vakilian M, Tahamtani Y, Ghaedi K. A review on insulin trafficking and exocytosis. Gene 2019; 706: 52-61
  • 33 Annibalini G, Contarelli S, Lucertini F. et al. Muscle and Systemic Molecular Responses to a Single Flywheel Based Iso-Inertial Training Session in Resistance-Trained Men. Front Physiol 2019; 10: 554
  • 34 Lauritzen HP, Brandauer J, Schjerling P. et al. Contraction and AICAR stimulate IL-6 vesicle depletion from skeletal muscle fibers in vivo. Diabetes 2013; 62: 3081-3092
  • 35 Bittel DC, Jaiswal JK. Contribution of Extracellular Vesicles in Rebuilding Injured Muscles. Front Physiol 2019; 10: 828
  • 36 Jin Y, Long D, Li J. et al. Extracellular vesicles in bone and tooth: A state-of-art paradigm in skeletal regeneration. J Cell Physiol. 2019 . doi:10.1002/jcp.28303. doi:10.1002/jcp.28303
  • 37 Moro A, Driscoll TP, Boraas LC. et al. MicroRNA-dependent regulation of biomechanical genes establishes tissue stiffness homeostasis. Nat Cell Biol 2019; 21: 348-358
  • 38 van Niel G, D’Angelo G, Raposo G. Shedding light on the cell biology of extracellular vesicles. Nat Rev Mol Cell Biol 2018; 19: 213-228
  • 39 Herrmann M, Jakob F. Bone Marrow Niches for Skeletal Progenitor Cells and their Inhabitants in Health and Disease. Curr Stem Cell Res Ther 2019; 14: 305-319
  • 40 Totaro A, Panciera T, Piccolo S. YAP/TAZ upstream signals and downstream responses. Nat Cell Biol 2018; 20: 888-899
  • 41 Rausch V, Hansen CG, Pathway TH. YAP/TAZ, and the Plasma Membrane. Trends Cell Biol 2020; 30: 32-48
  • 42 Houschyar KS, Tapking C, Borrelli MR. et al. Wnt Pathway in Bone Repair and Regeneration - What Do We Know So Far. Front Cell Dev Biol 2018; 6: 170
  • 43 Baron R, Kneissel M. WNT signaling in bone homeostasis and disease: from human mutations to treatments. Nat Med 2013; 19: 179-192
  • 44 Haraguchi R, Kitazawa R, Kohara Y. et al. Recent Insights into Long Bone Development: Central Role of Hedgehog Signaling Pathway in Regulating Growth Plate. Int J Mol Sci 2019; 20 . doi:10.3390/ijms20235840
  • 45 Zheng Y, Pan D. The Hippo Signaling Pathway in Development and Disease. Dev Cell 2019; 50: 264-282
  • 46 Kegelman CD, Coulombe JC, Jordan KM. et al. YAP and TAZ Mediate Osteocyte Perilacunar/Canalicular Remodeling. J Bone Miner Res 2020; 35: 196-210
  • 47 Jepsen DB, Ryg J, Hansen S. et al. The combined effect of Parathyroid hormone (1-34) and whole-body Vibration exercise in the treatment of postmenopausal OSteoporosis (PaVOS study): a randomized controlled trial. Osteoporos Int 2019; 30: 1827-1836
  • 48 Gardinier JD, Daly-Seiler C, Rostami N. et al. Loss of the PTH/PTHrP receptor along the osteoblast lineage limits the anabolic response to exercise. PLoS One 2019; 14: e0211076
  • 49 Dasgupta I, McCollum D. Control of cellular responses to mechanical cues through YAP/TAZ regulation. J Biol Chem. 2019 10.1074/jbc.REV119.007963. 10.1074/jbc.REV119.007963.
  • 50 Ziouti F, Ebert R, Rummler M. et al. NOTCH Signaling Is Activated through Mechanical Strain in Human Bone Marrow-Derived Mesenchymal Stromal Cells. Stem Cells Int 2019; 2019: 5150634
  • 51 Panciera T, Azzolin L, Cordenonsi M. et al. Mechanobiology of YAP and TAZ in physiology and disease. Nat Rev Mol Cell Biol 2017; 18: 758-770
  • 52 Ramasamy SK, Kusumbe AP, Wang L. et al. Endothelial Notch activity promotes angiogenesis and osteogenesis in bone. Nature 2014; 507: 376-380
  • 53 Verma M, Asakura Y, Murakonda BSR. et al. Muscle Satellite Cell Cross-Talk with a Vascular Niche Maintains Quiescence via VEGF and Notch Signaling. Cell Stem Cell 2018; 23: 530-543 e539
  • 54 Baghdadi MB, Tajbakhsh S. Regulation and phylogeny of skeletal muscle regeneration. Dev Biol 2018 433. 200-209
  • 55 Xu M, Chen X, Chen D. et al. Regulation of skeletal myogenesis by microRNAs. J Cell Physiol. 2019 . doi:10.1002/jcp.28986. doi:10.1002/jcp.28986
  • 56 Rodriguez J, Vernus B, Chelh I. et al. Myostatin and the skeletal muscle atrophy and hypertrophy signaling pathways. Cell Mol Life Sci 2014; 71: 4361-4371
  • 57 Bialek P, Parkington J, Li X. et al. A myostatin and activin decoy receptor enhances bone formation in mice. Bone 2014; 60: 162-171
  • 58 Wackerhage H, Schoenfeld BJ, Hamilton DL. et al. Stimuli and sensors that initiate skeletal muscle hypertrophy following resistance exercise. J Appl Physiol (1985) 2019; 126: 30-43
  • 59 Leong I. Osteoglycin – linking bone and energy homeostasis. Nat Rev Endocrinol 2018; 14: 379
  • 60 Fallon JR, McNally EM. Non-Glycanated Biglycan and LTBP4: Leveraging the extracellular matrix for Duchenne Muscular Dystrophy therapeutics. Matrix Biol 2018; 68-69: 616-627
  • 61 Le Bihan MC, Bigot A, Jensen SS. et al. In-depth analysis of the secretome identifies three major independent secretory pathways in differentiating human myoblasts. J Proteomics 2012; 77: 344-356
  • 62 Ardawi MS, Rouzi AA, Qari MH. Physical activity in relation to serum sclerostin, insulin-like growth factor-1, and bone turnover markers in healthy premenopausal women: a cross-sectional and a longitudinal study. J Clin Endocrinol Metab 2012; 97: 3691-3699
  • 63 Picke AK, Sylow L, Moller LLV. et al. Differential effects of high-fat diet and exercise training on bone and energy metabolism. Bone 2018; 116: 120-134
  • 64 Kim JA, Roh E, Hong SH. et al. Association of serum sclerostin levels with low skeletal muscle mass: The Korean Sarcopenic Obesity Study (KSOS). Bone 2019; 128: 115053
  • 65 Moser SC, van der Eerden BCJ. Osteocalcin-A Versatile Bone-Derived Hormone. Front Endocrinol (Lausanne) 2018; 9: 794
  • 66 Liu C, Cui X, Ackermann TM. et al. Osteoblast-derived paracrine factors regulate angiogenesis in response to mechanical stimulation. Integr Biol (Camb) 2016; 8: 785-794
  • 67 Charbonier FW, Zamani M, Huang NF. Endothelial Cell Mechanotransduction in the Dynamic Vascular Environment. Adv Biosyst 2019; 3 . doi:10.1002/adbi.201800252
  • 68 Hafen B, Wiesner S, Schlegelmilch K. et al. Physical contact between mesenchymal stem cells and endothelial precursors induces distinct signatures with relevance to the very early phase of regeneration. J Cell Biochem 2018; 119: 9122-9140
  • 69 Theret M, Mounier R, Rossi F. The origins and non-canonical functions of macrophages in development and regeneration. Development 2019; 146 . doi:10.1242/dev.156000
  • 70 Bozec A, Soulat D. Latest perspectives on macrophages in bone homeostasis. Pflugers Arch 2017; 469: 517-525
  • 71 Dort J, Fabre P, Molina T. et al. Macrophages Are Key Regulators of Stem Cells during Skeletal Muscle Regeneration and Diseases. Stem Cells Int 2019; 2019: 4761427
  • 72 Dick SA, Macklin JA, Nejat S. et al. Self-renewing resident cardiac macrophages limit adverse remodeling following myocardial infarction. Nat Immunol 2019; 20: 29-39
  • 73 Schultze JL. Myocardial infarction cell by cell. Nat Immunol 2019; 20: 7-9
  • 74 Jain N, Moeller J, Vogel V. Mechanobiology of Macrophages: How Physical Factors Coregulate Macrophage Plasticity and Phagocytosis. Annu Rev Biomed Eng 2019; 21: 267-297
  • 75 Addison O, Drummond MJ, LaStayo PC. et al. Intramuscular fat and inflammation differ in older adults: the impact of frailty and inactivity. J Nutr Health Aging 2014; 18: 532-538
  • 76 Addison O, Marcus RL, Lastayo PC. et al. Intermuscular fat: a review of the consequences and causes. Int J Endocrinol 2014; 2014: 309570
  • 77 Morales PE, Bucarey JL, Espinosa A. Muscle Lipid Metabolism: Role of Lipid Droplets and Perilipins. J Diabetes Res 2017; 2017: 1789395
  • 78 Wong AK, Chandrakumar A, Whyte R. et al. Bone Marrow and Muscle Fat Infiltration Are Correlated among Postmenopausal Women With Osteoporosis: The AMBERS Cohort Study. J Bone Miner Res. 2019 . doi:10.1002/jbmr.3910. doi:10.1002/jbmr.3910
  • 79 Paccou J, Penel G, Chauveau C. et al. Marrow adiposity and bone: Review of clinical implications. Bone 2019; 118: 8-15
  • 80 Wu H, Ballantyne CM. Skeletal muscle inflammation and insulin resistance in obesity. J Clin Invest 2017; 127: 43-54
  • 81 Urban H, Little CB. The role of fat and inflammation in the pathogenesis and management of osteoarthritis. Rheumatology (Oxford) 2018; 57: iv10-iv21
  • 82 Grimm A, Meyer H, Nickel MD. et al. Repeatability of Dixon magnetic resonance imaging and magnetic resonance spectroscopy for quantitative muscle fat assessments in the thigh. J Cachexia Sarcopenia Muscle 2018; 9: 1093-1100
  • 83 Grimm A, Meyer H, Nickel MD. et al. A Comparison between 6-point Dixon MRI and MR Spectroscopy to Quantify Muscle Fat in the Thigh of Subjects with Sarcopenia. J Frailty Aging 2019; 8: 21-26
  • 84 Pagano AF, Brioche T, Arc-Chagnaud C. et al. Short-term disuse promotes fatty acid infiltration into skeletal muscle. J Cachexia Sarcopenia Muscle 2018; 9: 335-347
  • 85 Grimm A, Nickel MD, Chaudry O. et al. Feasibility of Dixon magnetic resonance imaging to quantify effects of physical training on muscle composition-A pilot study in young and healthy men. Eur J Radiol 2019; 114: 160-166
  • 86 Pourteymour S, Eckardt K, Holen T. et al. Global mRNA sequencing of human skeletal muscle: Search for novel exercise-regulated myokines. Mol Metab 2017; 6: 352-365
  • 87 Mammoto T, Mammoto A, Ingber DE. Mechanobiology and developmental control. Annu Rev Cell Dev Biol 2013; 29: 27-61
  • 88 Iskratsch T, Wolfenson H, Sheetz MP. Appreciating force and shape-the rise of mechanotransduction in cell biology. Nat Rev Mol Cell Biol 2014; 15: 825-833
  • 89 Petridou NI, Spiro Z, Heisenberg CP. Multiscale force sensing in development. Nat Cell Biol 2017; 19: 581-588